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Abstract

The automotive industry is highly dependable on assembly lines for the production of
today's demand volumes. Assembly lines were once introduced as an e�cient produc-
tion con�guration for a single product, in which the production tasks are divided among
multiple workstations organized along a conveyor belt. Nowadays, the automotive manu-
facturers cannot rely on production systems for a single model: the choice of vehicle comes
with innumerous con�gurations, options, and add-ins. In the production site, these di�er-
ent vehicles must share the same resources and may �ow on the same assembly line. As
a result, assembly lines must be at the same time specialized to provide high e�ciency,
but also �exible to allow the mass customization of the vehicles.

In this thesis, a compendium of problems and solution algorithms for the assembly line
balancing problem considering demand uncertainty is presented. As planning and building
an assembly line is a commitment of several months or even years, it is understandable
that the demand will �uctuate during the lifetime of an assembly line. New products are
developed, others are removed from the market, and the decision of the �nal customer
plays a role on the immediate demand. In this work, the demand or production sequence
is modeled using three di�erent view points of a system con�guration.

A �rst approach proposed in this thesis considers total control of the production
sequence. In this �rst problem, the assembly line planner can optimize the assembly line
and the production sequence simultaneosly. The uncertainty is due to the di�erent time
frames of both problems. The planning of an assembly line is a long term decision, while
the sequencing problem is solved in short-time based on the customer orders. An exact
solution procedure is proposed in this thesis for the optimal design of a paced assembly
line, which must operate with uncertain demand to be sequenced in the future. The
expected amount of utility work for the production is minimized using a combinatorial
version of the Benders' decomposition.

A second problem dealt with in the thesis is the design of an assembly line when
the planner plays no role in the production sequence. In this approach, the production
sequence is considered to be random. A Branch-and-Bound Algorithm using Markov
chains to evaluate partial solutions is proposed and used to solve instances exactly.

A third contribution considers a restriction on the sequence control. The planner has
at disposal a bu�er to alter the production sequence locally. For this problem setting,
the bu�er operation is optimized, in which selection policies are proposed and tested.
The uncertainty is modeled through a random bu�er entry, that must be resequenced
respecting production and due date restrictions in an online setting.
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Chapter 1

Introduction

1.1 Motivation and overview

There are few products nowadays that can be compared to an automotive vehicle. Usually
weighing from 800 kg to several tons and costing several thousand or even extremes such
as a couple of million Euros, it is astonishing to see such a large product playing a major
role in our society. According to the European Automotive Manufacturers Association
[ACEA, 2020], there were 610 vehicles for every 1000 inhabitants in the European Union
in 2018. Such numbers require an annual production of 92.8 million vehicles worldwide or
18.5 million vehicles in the European Union [ACEA, 2020], which is equivalent to almost
3 vehicles per second worldwide. Such production levels require large facilities and a
signi�cant part of the labor workforce. In the European Union, direct and indirect jobs
in this industry account for 6.7% of the total job market.

Although automotive vehicles and large-scale production existed before, the mass pro-
duction shift of durable automotive vehicles is credited to Henry Ford with his Ford Model
T in 1908 [Binder and Rae, 2020]. The innovation was to consider the transport of the
products or workpieces in conveyor belts, on which the vehicles �ow through a series of
workstations [Binder and Rae, 2020]. The hundreds or thousands of individual tasks are
divided among the workers in an assembly line. This way, each worker performs simple
tasks in which he or she can specialize. Each worker can then perform the operations
within a small cycle time, after which the workpiece is transported to the next station.

The division of the task elements among the multiple workstations is a classical prob-
lem in Operations Research named Assembly Line Balancing Problem (ALBP) and was
�rstly discussed in a thesis by Bryton [1954] and in a research paper by Salveson [1955].
A related optimization problem is the Bin Packing Problem, in which objects have to be
assigned and �tted into bins in a way that the number of required bins is minimized. In
assembly lines, the objects can be seen as the operational tasks, while the bins are the
workstations. Instead of having a physical dimension, each task requires a given amount
of time in the station. The limitation is not the bin size, but the cycle time of the as-
sembly line. A di�erence between the Assembly Line Balancing Problem and the Bin
Packing Problem is due to precedence relations [Wee and Magazine, 1982]. In the basic
version of the Bin Packing Problem, each object can be assigned freely among the bins. A
production sequence, on the other hand, usually requires some partial order between the
tasks. As products and pieces are assembled, interior parts are not reachable anymore.
Hence, there exist precedence relations between the tasks.

The Assembly Line Balancing Problem in its base form as described in the last para-

1



Chapter 1. Introduction 2

graph is called Simple Assembly Line Balancing Problem (SALBP) [Scholl and Becker,
2006] and has very strict assumptions such as deterministic and known production times,
a serial line, and the production of a single product. Although these assumptions may
be true for Ford's Model T, the automotive market requires a high level of customization
nowadays Boysen et al. [2008]. It is not possible to establish an assembly line for a single-
vehicle anymore. Instead, the production system has to be �exible enough to assemble
several vehicle variations. Boysen et al. [2008] describe the new paradigm as mass cus-
tomization, in which the customer can select almost every element of the product from
a given range of options. The number of theoretically possible combinations resulting in
unique products is huge. Boysen et al. [2009a] report the number of variations of popular
vehicle models in 2004, which vary from 40,000 to 3.35 · 1024 for a selection of European
cars.

The presence of multiple product models results in a more complex optimization prob-
lem, since not only the assignments of tasks to stations are important, but also how the
product models are sequenced. Di�erent production layouts, the presence of bu�ers, and
the production sequence greatly a�ect the productivity of an assembly system. Further-
more, the customer's taste changes and evolves. So the demand itself may vary during
the operational time of an assembly line. Such complexity factors are explored in this
manuscript, mainly dealing with the uncertainty of demand in the balancing of multiple-
product assembly lines.

1.2 Objectives and document outline

The outline of the document is described along with the objective of each chapter. In
general, the thesis brings new contributions to the research of assembly line balancing
under demand uncertainty.

The �rst objective of the document is to describe the production stages at automotive
manufacturers. The production of vehicles is di�erent than considering a general product
because of the large dimensions. Cars, trucks, or buses are large and heavy products,
so their handling is rather limited. The deviations of production times cannot be easily
compensated by bu�ers, since the size of the products poses a strong restriction. In
Chapter 2 the di�erent stages of production are described, among related optimization
problems, such as production planning, assembly line balancing, sequencing, resequencing,
etc.

Chapter 3 contains a literature review on di�erent sources of uncertainty in the balanc-
ing of assembly lines. A classi�cation of the literature is extended to model the stochas-
tic components of the problem. The uncertainty is mostly modeled in the processing
times, while much fewer references deal with uncertain demand or production sequences.
Chapter 3 is also used to identify gaps in the literature, which are partially �lled by
contributions described in Chapters 4 - 6.

The research core of the manuscript consists of three chapters containing each a prob-
lem de�nition and a solution procedure. All of the contributions deal with assembly lines
under uncertain demand, although in each chapter a di�erent assumption or view of the
problem is proposed. One key aspect to distinguish the three problems is the control over
the production sequence.

The �rst contribution is detailed in Chapter 4. For this problem setting, production
sequencing is totally de�ned by the planner of the assembly line. This assumption allows
selecting a production sequence that matches well with the assignment of tasks in the
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assembly system. For this problem, the assembly line problem and production sequencing
problem are solved in an integrated form. As both decisions are taken in di�erent time
frames in practical applications, a hierarchical approach is de�ned. The assignment of
tasks to stations is a medium to long-term decision, while the production sequencing is
solved on a daily or weekly basis. The uncertainty in the problem is represented by an
uncertain demand at the planning stage of the assembly line. This way, the balancing
of the assembly line has to be de�ned before the realization of the demand, while the
sequencing can be solved after the customers de�ne their orders. The problem is de�ned
in a two-stage stochastic programming model, for which an exact solution procedure is
proposed to minimize the expected utility work (amount of work from auxiliary versatile
workers). A Benders' Decomposition Algorithm based on combinatorial cuts is developed
among valid inequalities and improvements. The contents of Chapter 4 has some overlap
to the published article version of the chapter (see Sikora [2021]). The results of both
publications, however, are complementary.

At the other end of the control spectrum, the second approach models the balancing
problem under no control over the sequence. In Chapter 5, the production sequence
is considered to be random under given probabilities of the customer purchasing each
individual option. It is shown that the stochastic evaluation of a balancing con�guration
can be modeled as a Markov process, yielding the exact computation of the expected
utility work under a random sequence. A Branch-and-Bound Algorithm is used to solve
the problem, for which not only the assignment but also the station length is optimized.
The objective function is modeled as the sum of the cost contributions of the expected
utility work cost and the line length cost. The solution procedure consists of a three-stage
process: in the �rst stage the assignments are de�ned; the second stage is a single variable
optimization for the station length; while the last one is a Markov process to calculate
the expected utility work for a given assignment and station length.

In between the sequence control paradigms, a third work examines the implementation
of resequencing in automotive assembly lines. In Chapter 6, the problem of restricted rese-
quencing under an uncertain production sequence is tackled. The scope of the problem is
modeled within a bu�er at the beginning of the assembly line. For a given pre-determined
assembly line, the problem consists of selecting the production order to enter the produc-
tion system. The considered production cost contribution is the utility work necessary
for the production within the cycle time. In each cycle time, a product in the bu�er must
be selected, while the next product entering the bu�er is considered to be random. The
product selection is performed for every cycle time without the knowledge of the new
entering vehicle model. The described situation is an online decision problem, for which
heuristic policies are proposed and tested using a simulation model.

The thesis ends with a conclusion in Chapter 7. At the conclusion, the results of
the chapters are summarized among with an evaluation of the ful�llment of the proposed
research objectives and future works.



Chapter 2

Design and operation of assembly lines

In this chapter, assembly lines are introduced and described comparing their features to
other production layout organizations. The contextual characteristics of the automotive
industry are described, along with their repercussions on the design and operation of
assembly lines.

2.1 Production and layout con�gurations

Production is a process in which an object is transformed in order to increase its value
[Günther and Tempelmeier, 2012, p. 7-8]. This transformation has raw materials or semi-
�nished products as inputs and �nished goods as output. The production of screws, cell
phones, cars, and airplanes, for instance, starts with the extraction of ore and oil, which
are transformed into several intermediary products until the �nal assembly of the product.
Most of the goods produced in the current economy are made by industrial production
divided into several levels, industries, and companies [Günther and Tempelmeier, 2012,
p. 2]. In the era of globalization, the production steps may be performed even on di�erent
continents. For the production of a car, for instance, it is not unrealistic to think of ore
extracted in Brazil being processed in steel sheets in China, transformed into parts of
a transmission in Germany, which is �nally assembled into a car in Mexico for its local
market.

The process of a given production step can be classi�ed based on the number of
di�erent products and the produced quantities. [Günther and Tempelmeier, 2012, p. 11-
12] characterize the production as mass, serial, and individual production. The production
of a single good (or a family of similar goods) continuously and inde�nitely is characterized
by mass production. The homogeneity of the products is ideal for a highly e�cient
production often mechanized or automated. Examples are the production of cement or
screws, which are industrially produced by dedicated resources. Serial production is a
process within mass production characterized by the production of batches of given sizes.
That is, the resources of a production system are devoted to a good for a speci�c amount
of time in which the batch is produced. A set-up is then used to adapt the production
system to a new product, initiating a new batch. Serial production often uses highly
specialized machinery and workers but may be �exible enough to adapt itself to di�erent
products. Finally, individual production is responsible for non-standard products that
may be speci�ed di�erently in each customer order.

The production process di�ers not only between industries but also within companies
themselves. An e�cient process usually requires di�erent machines and specialized work-

4
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ers, which are allocated to multiple steps in the production process. Suitable production
systems depend on the quantity and kind of goods produced. On the one hand, an air-
plane may take months to build and is usually highly customizable. On the other range
of the spectrum, screws are standardized goods that are produced in a number of millions
per day. The complexity, demand volume, and customization options play an important
role in the adequate and pro�table way to produce these goods.

Among the most important production con�gurations are the function-oriented and
the product-oriented layouts. In a function-oriented con�guration, the resources are di-
vided based on their function, in which similar machines are spatially set up together.
For instance, turning, drilling, and milling operations are performed in separate spaces
using the respective resources. This con�guration allows the production of a high variety
of goods since products can be moved to the necessary machines in the required order.
This degree of �exibility, however, imposes limitations on production levels (in comparison
to the product-oriented con�guration, presented next). The complex �ow and the non-
specialization of the production resources are therefore more adequate to the production
of small or single-product batches.

At the other end of the spectrum, product-oriented layouts are based on the produced
good. Machines and resources are organized in the order in which they are necessary for
the given product. This organization simpli�es the material �ow since each step of the
production is performed by a machine or station along with the production site. This
layout is ideal for highly specialized and automated machinery and is applicable when
all production steps are based on a single product or a family of similar products. The
productivity of the desired product is high but its �exibility is rather limited. Therefore,
product-oriented layouts are more adequate for the mass production of a single good or
the production of large batches.

There exists also intermediary con�gurations such as production cells, manufacturing
centers, and �exible production lines. These con�gurations share partly the characteristics
of the two layouts. One schematic representation of the adequate layout based on the
number of di�erent goods produced (variants) and the yearly volume of production is
illustrated by [Arnold et al., 2008, p. 124]. There is a trade-o� between �exibility and
productivity since the product-oriented layouts implemented in transfer lines are very
e�cient but rigid, while pure function-oriented layouts as in a workshop can produce a
high amount of di�erent products, but are limited in their e�ciency.

2.2 Production and layout con�guration in the auto-

motive industry

The automotive industry represents a considerable part of the world economy. Just in
the EU-15, the �rst 15 countries of the European Union (until April 2004), 428 billion
Euros are collected in taxes due to motorized vehicles [ACEA, 2019]. In 2019, 326 million
cars are estimated to exist in Europe [ACEA, 2019], while according to the International
Organization of Motor Vehicle Manufacturers [OICA, 2018], in 2018 the yearly production
of motor vehicles exceeded 95 million. The two leading car manufacturers in production
quantities, Toyota and Volkswagen, produced each over 10 million vehicles in 2017 [OICA,
2017]. These production numbers help to justify the selection of production layouts of
the larger automotive manufacturers described in this section.

Nowadays, the completed production of one vehicle per minute is typical for the auto-
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motive industry [Emde and Gendreau, 2017]. At the same time, there is market pressure
for variety and customization possibilities [Boysen et al., 2009a]. The number of con�gu-
rations, colors, features, and add-ins that are available can be combined to theoretically
trillions of di�erent vehicles [Boysen et al., 2007]. The large production level under high
varieties is also described as mass customization [Boysen et al., 2008].

Although some luxurious brands still rely on individualized and mostly manual produc-
tion, the majority of the vehicles are produced in a highly specialized product-oriented
layout. The production phases of a vehicle performed by a vehicle manufacturer are
mainly divided into 5 steps: Press shop, Body-in-white, Paint shop, Power train, and
Final assembly [Omar, 2011, p. 1-14]. It is noteworthy that only a subset of the produc-
tion operations is performed by the automotive manufacturers [Meyr, 2004]. Most of the
components and parts of the vehicles are delivered by suppliers and only assembled by
the manufacturer.

A simple illustration of automotive production is given in Fig. 2.1. The initial pro-
cessing steps are performed in the press shop, where sheets of metal are molded to form
the pieces of the structure of the vehicle. This part of the process depends on heavy ma-
chinery and is highly automated. The Body-in-white part of the production is responsible
to join and weld together the output pieces of the press shop. A car may require from
3,000 to 7,000 spot weld points to hold its �nal form, depending on its size [Hamidinejad
et al., 2012; Sikora, Lopes, Schibelbain and Magatão, 2017]. The welding procedures of
the body-in-white are also highly automated [Michalos et al., 2010] with multiple robots
operating in several workstations [Lopes et al., 2017; Michels et al., 2018].

Press shop Body-in-white Paint shop

Power train

Final assembly

Figure 2.1: Categorization of the processes of automotive manufacturers.

The next step of the process is the painting of the body-in-white. This process is
critical to the sequence of produced vehicles, since changing the color of the paint may
require a set-up time to clean the tools [Boysen et al., 2009c]. An example of a sequencing
optimization regarding the paint shop can be found in Gagné et al. [2006]. The Power
train assembly is a pre-assembly process that can occur in parallel to the body-in-white
and paint shop production. The power train consists of the engine and the drive train
of the vehicle. The power train and the body-in-white are then assembled in the �nal
assembly.

The last step of the process is the �nal assembly, in which most of the components
are mounted in the vehicle. Among the assembled elements are all the interior parts,
lights, wires, tires, windscreens, dashboards, etc. Several of the assembly procedures are
still manually performed due to the great variety of tasks and products. The assembly
line balancing problem, the focus of this work, is mainly based on this last step of the
production.

To achieve production rates of one vehicle in less than one minute, the necessary
tasks must be divided into several workstations. Assembly lines may have hundreds of
workers to ensure that the aimed production rate is achieved. The rapid production speed
requires a huge amount of logistic and organizational e�orts. The employed solution
for the transport �ow between workstations is mainly realized by conveyor belts. The
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transportation can be implemented in a paced or an unpaced system. Paced assembly
lines have a conveyor belt running at a constant speed. The selected speed controls
the cycle time, that is, the interval time between the production of two vehicles. The
workstations are organized in the physical space along the assembly line. The workers
perform their required operations in the product that is located at his or her stretch of the
conveyor belt at each time. After �nishing a product, the worker can start the operations
of the next product that enters the workstation.

One alternative to the paced conveyor belts is the implementation of unpaced systems.
The unpaced transportation of pieces does not rely on a constant speed of a conveyor
belt. In these systems, pieces remain in the workstation until it is free to move to the
next station. Therefore, the movement is said to be unpaced. There are two categories
of unpaced systems, the synchronous and the asynchronous lines. In synchronous lines,
all products located at the line are moved at once, after all tasks of each workstation are
completed. An asynchronous system allows products to be moved independently. The
product can be sent to the next station as soon as the operations are �nished and the
next station is free to receive a new product [Lopes, Michels, Sikora, Molina and Magatão,
2018].

The organization of factories on �ow-systems such as assembly lines poses hard con-
straints on the sequence in which products can be produced. In simple conveyor belts, the
products are moved from station to station in the same order. Rearranging the sequence
of products as large as cars or trucks requires extra handling systems that may not be
available at each station or assembly line. Furthermore, the size of the products of the
automotive industry poses limitations on the use of bu�ers in the production. Although
some bu�ers are usually used between the paint-shop and �nal assembly (see Section
2.6), bu�ers are rarely used within an assembly line due to their costs and size. The
low availability for bu�ers makes the system strongly reliable on the synchrony of the
workstations: the output of a station is the direct input of the following station. Because
of this, failures or errors in a single station may cause the interruption of the production
in the whole assembly line.

To cope with the challenges of high production levels, high variety of products, and
high reliability, the automotive manufacturers rely on the even division of the workload
among workers who are highly specialized in a small set of tasks. Furthermore, large
importance is given to the supply of the workpieces and tools at each station. Since
a huge variety of products can be produced, manufacturers usually sort the necessary
parts in the production order and use the logistic system to deliver these when needed.
According to Boysen et al. [2015], the materials are organized in kits to ensure easy access
without a�ecting the processing time. The logistic of the part supplies is classi�ed as Just-
in-Time since the parts should arrive when they are needed, or Just-In-Sequence, that
is, the pieces are delivered in the sequence they are needed [Boysen et al., 2009c]. These
conditions require a robust supply chain coordination between the manufacturer and the
suppliers.

2.3 Balancing of assembly lines

As already mentioned in the description of the production of automotive manufacturers,
the division of the workload among the production resources is essential to achieve high
production rates. The choice of a division of processing activities or tasks among resources
or workstations in an assembly line is called �assembly line balancing�. Not only the
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division of tasks is important in the industry, but also the formulation and solution of
the assembly line design as an optimization problem is well explored in the research
community. The �rst work that appeared in a research journal occurred in 1955, published
by Salveson [1955].

In the literature, the optimization problem of the division of tasks in assembly lines
is named Assembly Line Balancing Problem (ALBP). As its name already clari�es, the
main objective is to balance the tasks among multiple workstations to smoothen one or
more criteria. Mostly, the total processing time in each station is the aim of the balancing.
There are, however, other possibilities, such as the balancing of ergonomic e�orts among
workers [Otto and Scholl, 2011], space needed for equipment and tools [Bautista et al.,
2016], failure risk among machines [Müller et al., 2018], or variability in the case of
stochastic processing times [Kao, 1976].

Among various characteristics a task can have the most relevant to most balancing
problems are the processing time and the precedence relations [Baybars, 1986]. The
processing time is the amount of time a task needs to be performed. Although the
processing times may vary from worker to worker, the highly specialized task assignments
in the automobile industry usually result in stable and deterministic processing times
[Falkenauer, 2005]. The second element is the precedence relations between pairs of tasks.
In the assembly process, physical or technological restrictions may require that tasks
are performed in a speci�c order [Gutjahr and Nemhauser, 1964]. Such restrictions are
named precedence relations, which can be drawn as a graph. An example of the data for a
balancing problem with 7 tasks and precedence relations is given in Fig. 2.2. The number
inside each circle represents the task number, the processing time is represented at the
upper-right corner of each task, and the arrows between circles represent the precedence
relations. Directly linked tasks, such as tasks 1 and 3, de�ne direct predecessors (task
1) and successors (task 3). The precedence relations are also transitive, so that indirect
precedence relations, such as tasks 1 and 5, also apply. In this case, task 1 is called an
indirect predecessor of task 5. In the assembly line, a precedence relation means that a
predecessor task must be performed before its successor. As the stations are sequenced
along with the handling system, predecessors must be performed earlier than or at the
same station as its successors.

1 3 5

2

6

7

4

3

5

3

2

4

1

4

Figure 2.2: Example of a precedence diagram.

The balancing problems are classi�ed based on the extension of their characteristics.
Baybars [1986] distinguishes the so-called �Simple Assembly Line Balancing Problems
(SALBP)� from the �General Assembly Line Balancing Problems (GALBP)�. The SALBP
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version of the problem is based on various simpli�cations and assumptions and its appli-
cability on real assembly lines is limited. However, several optimization algorithms rely
on simpli�cations of the SALBP's structure, so that the development of models for the
simple version of the problem is still relevant [Scholl and Becker, 2006; Battaïa and Dolgui,
2013].

Baybars [1986] enumerates eight assumptions for the de�nition of SALB problems:

1. Processing times are known, static, and deterministic

2. Each task must be assigned to a single station

3. There may be precedence relations between tasks

4. All tasks must be performed

5. All stations are equally equipped and manned. No restriction such as station height,
position, or worker ability applies

6. The processing time of a task does not depend on the station on which it is processed

7. The line is assumed to be serial and to have no feeder lines (subassembly parallel
to the main line)

8. A single product model is produced.

One important consequence of these assumptions is that the production rate of the
assembly line is easily determined. As the processing times are independent of workers
and stations and only one product model is assembled, the processing time of each station
is simply the sum of the processing times of its tasks. The most loaded station is the
bottleneck of the entire line so that the cycle time of continuous production is limited
by the largest station processing time. An example for a feasible solution of a balancing
problem is shown in Fig. 2.3. A set of eleven tasks are assigned to six workstations.
All tasks are assigned to only one station and precedence constraints are observed. The
processing time of each station is shown at the top-right edge of each box and is computed
by the sum of the processing times of the tasks assigned to the station. Station 3 has the
largest processing time (11 time-units) so that this bottleneck station dictates the speed
of the whole assembly line. In the other stations, idle time occurs when a worker has
�nished the operations and waits for the next workpiece.

The additive nature of the processing times for the SALBP is important for the def-
inition of the objective functions of the problem. Among multiple variants, the most
explored ones are named SALBP-1 (type-1) and SALBP-2 (type-2) [Scholl and Becker,
2006]. In a type-1 problem, a given production throughput is given as a parameter. The
objective is to assign the tasks in a way that the number of stations needed is minimized.
In other words, the running costs of the assembly line are minimized for a given produc-
tion level. In SALBP-2, the production level is a variable of the problem. The number
of stations is given, while the objective is to maximize the use of the given resources by
minimizing the cycle time. Other versions and objectives are also possible, such as the
maximization of the line e�ciency (SALBP-E) and the feasibility version of the problem
(SALBP-F) [Scholl, 1999]. The latter focuses on whether a feasible solution exists for a
given cycle time and number of stations.
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Figure 2.3: Example of a balancing solution.

A General Assembly Line Balancing Problem is de�ned when one or more of the as-
sumptions of Baybars [1986] are relaxed. There are examples of variations of the problem
changing each of the listed assumptions. The �rst assumption is relaxed when the pro-
cessing times are considered either dynamic in the case of learning e�ects [Chakravarty,
1988] or stochastic [Kottas and Lau, 1973]. Tasks that require long processing times may
be assigned to more than one station. This may be implemented by using parallel stations
that can be realized by, for instance, two workers working the double of the cycle time
alternatively in two adjacent stations [Becker and Scholl, 2009]. The third assumption
does not necessarily need to hold. An assembly line balancing problem without prece-
dence relations is equivalent to a bin packing problem [Wee and Magazine, 1982]. The
fourth assumption requires that all tasks are performed. Although it is generally the case,
there are also variants in which only one option between a set of tasks may be performed.
These options are called alternative subgraphs and are dealt with in Scholl et al. [2009].
The stations may be di�erently equipped or manned in real assembly lines, disregarding
assumptions 5 and 6. Versions of the ALBP may employ equipment with di�erent costs
and capabilities to be chosen [Rubinovitz and Bukchin, 1991] or heterogeneous workers
[Miralles et al., 2007]. Other con�gurations of assembly lines can also be modeled, such
as feeder lines, U-shaped lines [Miltenburg and Wijngaard, 1994], parallel lines, lines with
moving workers [Sikora, Lopes and Magatão, 2017], etc. Finally, assembly lines for multi-
ple products as in Thomopoulos [1967] are extremely common in real production systems
[Boysen et al., 2008].

One important consequence of relaxing some of the assumptions is that the calculation
of the cycle time may not be additive anymore. One example of this property is when
more than one worker is assigned to a station. Fig. 2.4 illustrates multiple possibilities of
assigning workers to stations. The simple version of the problem assumes a single worker
in each station. Two-sided assembly line problems use the advantage of large products
of the automotive industry and allow two workers at the same time [Bartholdi, 1993]. In
these lines, tasks are distinguished by whether they can be performed on the left, the right,
or both sides of the car. Since there may be interactions between workers, the tasks should
be scheduled within one station. These interactions may be due to precedence relations
(such as a task performed by one worker is necessary for a successor task performed by
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the second worker) or accessibility restrictions (when the tasks of both workers require the
same physical space to be performed). This necessity of scheduling changes the processing
time calculation of the station. Instead of the mere sum of the duration of the assigned
tasks, the processing time in the station is the maximal amount any worker needs to �nish
his or her operation, including possible waiting times. Other variations with more workers
are also possible, such as the Multi-Manned Assembly Line Problem [Becker and Scholl,
2009; Michels et al., 2019]. In this variation, more than two workers may be assigned to
a station simultaneously. Other examples of variations in which the cycle time is not the
simple sum of the individual task processing times are assembly lines with set-up times
between tasks [Akpinar et al., 2017] or assembly lines with multiple product models. The
latter is explored in more detail in the next section.

Station 1 Station 3

Simple assembly line 

Multi-manned assembly line 

Two-sided assembly line 

Station 2

Figure 2.4: Comparison of a simple assembly line, a two-sided assembly line, and a multi-
worker assembly line (Michels et al. [2019], Fig. 1).

2.4 In�uence of multiple products

Designing assembly lines for multiple product models increases the number of features
to consider comparing to single-product lines. Cars with di�erent seats or consoles may
need more or less time for their installation. Even greater is the impact of the installation
of a sunroof: some products may require its installation, while others without it do not
need any processing time at all for this task. To be e�cient, the balancing of an assembly
line with multiple product models has to consider all the possible products and their
variations.

In this section, the in�uence of multiple products in the balancing solution is illus-
trated. For that, a small instance with three stations and four product models (M1 to
M4) is considered. The processing times per station and product model for a given bal-
ancing solution are given in Table 2.1. Note that products may have the same processing
times in the same station, for instance, product models 2 and 3 in station 1 or 2, or



Chapter 2. Design and operation of assembly lines 12

processing times that may greatly di�er, such as product models 1 and 2, in station 1.
These di�erences may be justi�ed by a di�erent set of operations assigned to the station
or by the di�erent duration of the same tasks (such as the seat or sunroof example). For
example, Thomopoulos [1967] assumes that a task must be assigned to a station for all
products. These assignments are more restricted than freely assigning tasks di�erently
for each product. This constraint, however, may bring a large cost reduction. Equipping
and training personal of multiple stations for the same task may signi�cantly increase the
running costs of an assembly line [Thomopoulos, 1967].

The observed e�ect of multiple product models depends on the handling system of an
assembly line. Therefore, paced and unpaced lines are discussed separately, starting with
unpaced asynchronous con�gurations. In these lines, the movement of a product to the
next station is allowed when all tasks are �nished in the station and the next station is
free. Fig. 2.5 is a Gantt chart with the temporal description of the production of the four
product models (M1-M4) in ascending order. The products �ow through the line in the
same order and no overlapping is possible. Each row represents a station, while each gray
block represents the processing time of a product. The length of each block is the same as
the processing time data given in Table 2.1. At time 0, station 1 starts the processing of
M1, which takes 5 time units (t.u.). At time 5 t.u., M1 is �nished in the �rst station and
is moved to station 2. Simultaneously, station 1 receives the next product (M2) and starts
its operation. As is common in the literature, the transport times are neglected, since they
normally just add a constant transfer time to each station (exceptions are found in Bard
[1989]; Michels et al. [2018]). Product M2 is �nished at station 1 at time 7 t.u. At this
moment, however, station 2 is still processing M1. Therefore, M2 cannot be transported
to the next station and has to wait until the conclusion of product M1 at time 9 t.u. This
condition is named blocking since product M2 is impeded to be moved ahead. Another
phenomenon that occurs in unpaced asynchronous lines is called starvation. A station
is said to starve when it has already completed the assembly of a product, but the next
product is not ready to be transferred yet. Starvation occurs between time 14 t.u. and
15 t.u., while station 3 has �nished and passed product M2 along and waits for M3. In
this diagram, blocked tasks are shown as white blocks with lower case letters (m2,m3,
and m4) while starvation is shown as blank spaces between blocks of tasks.

As illustrated in Fig. 2.5, the working times of workstations of unpaced assembly lines
are a�ected by the di�erent processing times and the waiting times. The four products
occupied station 1 for a total of 16 t.u., while the sum of their processing times would
require only 13 t.u. according to Table 2.1. The production rate of such lines is also
not constant. Taking the di�erence in time between the production of each two adjacent
products in Fig. 2.5 after the time 9 t.u., products take respectively 3 t.u., 2 t.u., 4 t.u.,
and 1 t.u. to exit the assembly line. Note that, in the Gantt diagram, stations 2 and
3 do not produce until M1 arrives at these stations. This only occurs because of the
example simpli�cation: the line is considered initially empty. In practice, much more

Table 2.1: Data for an assembly line instance with three stations and four product models.

Processing time
Station Product 1 Product 2 Product 3 Product 4

1 5 2 2 4
2 4 3 3 2
3 3 2 3 1
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Figure 2.5: Gantt chart of the production in an asynchronous unpaced line.

than 4 products would be produced and all stations are likely to be occupied almost at
any given time.

In unpaced systems, the start, end, and move times of each piece depend on the
combination of the processing times of all products. The production rate is variable and is
also strongly a�ected by the sequence of products. The system is, however, �exible to deal
with varying processing times, since the movement of pieces can be done independently.

A second possible handling system is a synchronous unpaced line. Synchronous lines
are similar to the asynchronous unpaced line of Fig. 2.5, but they present a further
movement restriction. The handling of pieces is done simultaneously. That is, all pieces
are moved to the next station at the same time when all of them are �nished. A Gantt
diagram for the example in a synchronous line is shown in Fig. 2.6. The transfers of pieces
are done at 5 t.u., 9 t.u., 12 t.u., 16 t.u., 19 t.u., and 20 t.u. Note that even though products
M2 and M3 are �nished in stations 3 and 2 by time 14 t.u. and 15 t.u., respectively, the
synchronous movement requires that product M4 must be �nished before the transfer of
all pieces. Synchronous lines have no starvation, but instead, all non-bottleneck stations
are blocked until the synchronous transfer.
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Figure 2.6: Gantt chart of the production in a synchronous unpaced line.

Just as asynchronous lines, the productivity of synchronous unpaced lines is variable.
Due to the extra restriction of simultaneous movement, synchronous lines are less than or
in the best case as e�cient as asynchronous lines. Hybrid variants can also be considered,
in which part of the line moves synchronously and part asynchronously with intermediate
e�ciency [Lopes, Michels, Sikora, Molina and Magatão, 2018].

Paced lines operate with a conveyor belt that continuously moves the products along
the line. Workers can perform the assembly tasks during the time in which the product
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�ows within the workstations. The operation of a paced line is de�ned based on three
parameters: conveyor belt speed, launching rate, and station length. The conveyor speed
controls how fast the product �ows along with the workstations and is normally constant
along the assembly line. The launching rate is de�ned based on the time interval between
the entry of two products in the line. This time interval is also de�ned as the cycle time

Boysen et al. [2007]. The launching rate is usually constant [Boysen et al., 2009c], although
they can also vary [Fattahi and Salehi, 2009]. Finally, the station length is the physical
space de�ned for a workstation and can be de�ned as a time-window in which the workers
can access the product [Yano and Rachamadugu, 1991]. Note that the three parameters
are interconnected: a given cycle time and conveyor speed may de�ne a minimal station
length, for instance. If the station is shorter than the multiplication of the cycle time
and the conveyor speed, the worker's window is shorter than the cycle time. He or she
may perform tasks during the period in which the product is available and may wait for
the next product at the next launching time. For a given length, station's limits can be
de�ned, which represent the initial points and the �nal points between which workers may
perform tasks for a product. These borders between stations can be further distinguished
between open and closed borders. The latter present �xed limits on the space of a station.
Open borders are soft restrictions, that is, the worker may extrapolate the station limits
and advance into the adjacent workstation. Working outside of the window, however, may
cause interference with workers of the adjacent stations [Yano and Rachamadugu, 1991].
In the example with the processing time data from Table 2.1 and for the rest of the book,
only closed borders are considered. Furthermore, a conveyor speed of 1 length unit (l.u.)
per time unit (t.u.) is assumed here. This selection is arbitrary, since a line operating at
double the speed and with the double length has exactly the same time window. In a real
setting, the station length and speed are set to a value so that the equipment and tools
�t the available space Chica et al. [2013].

Operating paced lines with closed borders and a constant launching rate means that
the amount of time each product remains in each station is equal. This poses some
di�culties to the balancing of multiple product models because the necessary processing
times vary with the product. One of the alternatives would be to select a cycle time so
that every product could be completed in the worker's time window. For the data of Table
2.1, a cycle time of 5 t.u. and a station length of 5 l.u. (conveyor belt speed is set at 1
l.u. per t.u.) would be required so that M1 can be �nished in time at the �rst station.
Although this solution is very robust, since it is based on the worst possible case, it is very
ine�cient. M1 has idle times in the other two stations while the processing of products
M2 to M4 causes idle times in every assembly step. Product model M4 in station 3, for
instance, is processed only in 20% of the time of a cycle.

A second alternative is to select a cycle time and station length based on the average
needed for production in the bottleneck station. For the example of Table 2.1, the �rst
station requires an average of 3.25 t.u. per product. Setting this launching rate is roughly
54% more productive than the worst-case solution. This higher production, however,
can not always be realized. In the �rst station, M1 and M4 require more time than
the time available in a cycle (the same happens to M1 in the second station). That is,
the production may be infeasible without any additional measures to compensate the
processing times longer than the cycle time.

A combination of a longer station length and remedial actions can provide the �ex-
ibility needed to compensate for the product model variations. Fig. 2.7 illustrates how
the length of the station can be used as a time bu�er for the production of the example
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of Table 2.1. In the �gure, the position of the worker on station 1 is displayed considering
a station length of 5 l.u.. The worker starts in the �rst row by the processing of M1,
which takes 5 t.u.. The worker moves along the line, so that when product M1 is �nished,
the worker is at the end of the station, at position 5 l.u.. Although the station has an
equivalent length of 5 l.u., the launching interval remains at 3.25 t.u. That means that
the second product (M2) enters the station when M1 is at position 3.25 l.u. (the con-
veyor speed is set to 1 l.u/t.u.). A longer station length results in the possibility of more
than one product being in the station at the same time. When the worker �nishes M1
at position 5 l.u., M2 is already at position 1.75 l.u.. After �nishing the processing of a
product, the worker returns along the line with no additional time to start processing the
next product. This is illustrated as an arrow between the end position of each product to
the start of the next one in the �gure. This way, a station length longer than the cycle
time can implement �exibility to allow producing multiple product models.

M1

M2

M3

M4

0 1 2 3 4 5

Product 1

Product 2

Product 3

Product 4

Figure 2.7: Chart with the position of a worker in a station of a paced line.

Increasing the length of stations induces, however, costs, such as the equipment, con-
veyor belt, or the cost of space. There are, therefore, economical and technical limits on
how long a station can stretch. It is important to notice that even for stations longer
than the cycle time, production infeasibilities may occur. Fig. 2.8 presents a chart with
the position of the worker in station 1 for a di�erent order of products: M1, M4, M2,
and M3. With this new sequence, the length of 5 l.u. is not enough for the production.
A black-colored block containing part of the production time of M4 illustrates a station
border violation. This violation should be corrected by applying remedial actions, such
as stopping the line or assigning a temporary extra worker to the station. A survey by
Boysen et al. [2009c] contains a list of the remedial actions explored in the literature.

The remedial actions are distinguished between the ones which correct the violation
within the station, and others compensate the violation outside the station. Starting
within a station, the extra temporary workers who may aid the production are called
utility workers, which perform utility work [Yano and Rachamadugu, 1991]. A utility
worker is more costly than a regular worker because he or she must be able to perform
the tasks of all stations he or she may support. A second internal compensation is increas-
ing the production speed. A worker can temporarily accelerate the processing of some
tasks to avoid a border violation at the cost of a possible lower product quality Boysen
et al. [2009c]. The second group of remedial actions compensates for violations within
the assembly line. Here, a possible action is to stop the conveyor system until the de-
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Figure 2.8: Chart with the position of a worker in a station of a paced line with remedial actions.

layed product is �nished in the station Silverman and Carter [1986]. The non-bottleneck
stations, however, have increased idle times in this case. Flexible or open station borders
are also another possibility. This approach allows workers to extend the stations' borders
to assure the production is completed [Thomopoulos, 1967]. Disadvantages are the in-
teractions of workers, who may block themselves and generate idle time. The third class
of actions is performed o� the assembly line. Assembly lines can have a repair shop at
the end of the line, in which non-�nished tasks can be performed if this is possible [Kao,
1976]. Alternatively, the repair shop may be installed along the assembly line, so that the
product can be reinserted after the tasks are completed. Finally, another remedial action
is to either dispose the non-completed product or to account for incompletion costs (loss
of value due to lacking features in the product). These remedial actions are normally
associated with paced lines. The variable cycle time of unpaced lines has the �exibility
to accommodate product variations.

The choice of the cycle time in paced lines presents a trade-o�. On the one hand,
shorter cycle times exhibit higher productivity. On the other hand, a short cycle time
requires more remedial actions to compensate for the deviations, since the shorter the
cycle time, the higher is the number of product models that require longer than the cycle
time in a station. The best solution depends on the available remedial actions and their
costs.

The e�ect of multiple products also depends on their sequence. As it can be observed
by comparing Figs. 2.7 and 2.8, the sequence is essential to determine whether a violation
occurs for a given cycle time. Sequences of complex product models in a row (as M1 and
M4 in Fig. 2.8) are the cause for remedial action, while alternating light (low total
processing time) and heavy (high total processing time) products may compensate the
processing time variations among themselves. The sequencing in assembly lines is explored
in the next section.

2.5 Sequencing in the automotive industry

As mentioned previously, the e�ciency of automotive production depends on the sequence
of the di�erent products. Boysen et al. [2009c] present three main factors as objectives of
selecting a suitable sequence: set-up times, due dates, and balancing of assembly lines.
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The painting process may present restrictions concerning the sequence of product
colors. Some systems require a cleaning time when a new color is selected. Therefore, a
suitable sequence may reduce the number of set-ups [Spieckermann et al., 2004; Gagné
et al., 2006]. Set-ups between product products may also be present in the body-in-
white phase or the �nal assembly, but most of the literature focus on the paint shop or
combinations of the paint shop and �nal assembly [Boysen et al., 2009c].

Due dates are especially important if production is based on the orders in an assembly-
to-order environment [Boysen et al., 2009c]. The production order is, however, not totally
�xed by the order in which the products are ordered. The demand may be aggregated in
daily or weekly plans which are then sequenced based on other objectives.

The e�ect of the sequence in the e�ciency of the balancing is introduced in Section
2.4. The example of Figs. 2.7 and 2.8 illustrates that the cost of remedial actions (or the
productivity itself for unpaced lines) depends on the product order. In the literature, two
approaches are used to optimize the sequence aiming at a smooth distribution of heavily
loaded products [Boysen et al., 2009c].

The �rst approach is called mixed-model sequencing and corresponds to the sequenc-
ing and detailed scheduling of products in the assembly line [Boysen et al., 2009c]. One
example of a detailed scheduling can be found in Fig. 2.7, in which the start and end
production times of each product are de�ned. The detailed schedule is used to calculate
whether the products are assembled inside station bounds and, if needed, the required
remedial action for the production in paced lines. For unpaced lines, the mixed-model se-
quencing is used to determine all production, starvation, and blockage times. McCormick
et al. [1989] show that the mixed-model sequencing for unpaced lines is NP-Complete for
a �xed number of stations. For paced lines, Yano and Rachamadugu [1991] present an
analytic solution for the case of one station and two product models. For more product
models, Yano and Rachamadugu [1991] develop only a heuristic.

A second approach simpli�es the sequencing and does not require a detailed scheduling
of pieces. The car-sequencing problem aims at �nding a sequence of products that respect
some sequencing rules [Drexl and Kimms, 2001]. These rules are mostly modeled as X
out of Y products. That is, in a sequence of Y products, at most X products containing
a given characteristic may be assigned Fliedner and Boysen [2008]. An example of such
a characteristic or option is the presence of sunroofs. Their installation may require a
signi�cant processing time in a station, while a car without a sunroof does not need this
task at all. Therefore, a sequence rule such as at most 1 product may have a sunroof
in any sequence of 3 vehicles is sensible. The sum of all rules in all stations de�nes the
car-sequencing problem. The objective is to �nd a sequence that obeys all rules or that
minimizes the number of disregarded rules [Fliedner and Boysen, 2008].

Both the mixed-model sequencing and the car-sequencing formulations are applied to
the same class of problems. There are, however, signi�cant di�erences between the two
approaches. The advantages of car-sequencing are based on its simplicity. This approach
is easier to understand and to implement so that sequencing rules are broadly used in
the industry [Golle et al., 2014a]. The car-sequencing, however, has also a number of
downsides. One of them is the complexity of generating the sequencing rules. Although a
1:3 rule is easy to understand, enumerating the exact rules for all combinations may be a
very complex problem. Furthermore, these rules consider that there are only two possible
product model options in each station [Golle et al., 2014a]. Cases in which three or more
processing time alternatives occur in one station cannot be modeled with such rules. An
example with 3 product models (M1, M2, and M3), in which product model M1 has a
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processing time below the cycle time, product model M2 has slightly a larger processing
time than the cycle time, and product model M3 a longer processing time is already
enough to show the di�culty of applying such rules. For the combinations of product
model M1 and either only M2 or M3, simple rules such as 2:3 (for product model M2) or
1:3 (for product model M3) would su�ce. A production sequence M2-M2-M3, however,
respects both rules (there are at most 2 instances of product model M2 and 1 of product
model M3 within a sequence of 3 products) but would de�nitively require some remedial
action. The third disadvantage of car-sequencing is that its objective is only a proxy for
the minimization of the use of remedial actions [Golle et al., 2014a]. If the optimal answer
of an instance must disrespect one or more rules (otherwise it would be infeasible), it does
not necessarily mean, that this sequence requires the minimal amount of remedial actions.
Golle et al. [2014a] show that optimal answers of the car-sequencing problem minimizing
rule violations require at least 15% more utility work comparing to the mixed-model
sequencing solution, which directly minimizes utility work. Furthermore, Golle et al.
[2014a] discuss that computational tests show that car-sequencing is only signi�cantly
easier and faster to solve for simple rules and under some further assumptions.

Another cost that is a�ected by the sequencing is the part-feeding logistic. Di�erent
products require speci�c parts which must be available at the station for the assembly.
Therefore, a possible sequencing objective is to smoothen the part usage to facilitate the
logistic process [Miltenburg, 1989]. If product models are evenly spread with respect to
the parts they need, the storage of components in each station would be used at a constant
rate. Under known and controlled usage rates, the logistic process may be simpli�ed and
yield lower inventory levels at the stations. In the literature, this problem is named level

scheduling [Boysen et al., 2009c].

Often a sequence must incorporate several if not all of the elements: set-up, due dates,
processing time variations, and part-feeding. The linear design of the production restricts
the reordering of products so that the sequence at the beginning of the process in the
body-in-white is very similar to the output sequence of the �nal assembly. According to
Boysen et al. [2009c], some companies set up an interlinked conveyor system, so that the
sequence must remain the same in the whole production process. Bu�ers (described in Sec.
2.6) can provide some �exibility, although their application is limited due to the product
sizes [Lopes et al., 2020b]. Often the multiple sequencing objectives are con�icting. Drexl
and Kimms [2001], for instance, solve the sequencing considering simultaneously station
load and part levels.

The sequencing of automotive production in a real application is a hard problem to
solve. Not only several objective functions may be modeled at the same time, but also
the instance sizes can be very large. The master scheduling of the weekly production, for
instance, has to sequence more than 10,000 products considering a continuous production
of a vehicle per minute. Therefore, heuristics and rules are still broadly in use [Golle
et al., 2014b].

These di�culties also translate to the balancing problem. Both, balancing and se-
quencing problems, are closely related, since each task assignment may determine whether
a product model requires a high or low processing time in that station. E�cient lines not
only have a good quality balancing and sequencing, but also an assignment that creates
synergies between them. These e�ects are hard to combine since balancing and sequencing
have a di�erent decision time frame. The balancing problem is a design problem. Once
implemented, the assembly line has a lifetime of months to years. On the other hand,
sequencing is mostly a short-term decision. The production quantities are determined
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usually by the product orders, so that each week or day may have a di�erent production
sequence. Therefore, a hierarchical approach may be considered, in which the balancing
is solved before a subsequent sequencing optimization Scholl [1999]. Lopes et al. [2020b]
test the inverted hierarchical approach by optimizing the balancing for known sequencing
con�gurations with improvements in the order of 5% for the given dataset. Therefore,
it is meaningful to combine the e�ects of both problems. Exact solution methods for
the simultaneous balancing and sequencing problem appear in the works of Karabati and
Say�n [2003]; Öztürk et al. [2015]; Lopes, Michels, Sikora, Molina and Magatão [2018];
Lopes et al. [2019]. However, these approaches are usually limited to small sequences,
due to the required computational e�ort to solve the problem. Furthermore, a unique
sequence is generally considered, while in practical applications the balancing has to cope
with a variety of product sequences.

2.6 Bu�ers

The interrelationship between sequencing and balancing and the severe limitations on
sequence control in the automotive industry are described in the last section (Sec. 2.5).
Due to conveyor belt systems and the large size of products, reordering vehicles is not
always possible. Such a reordering is, however, not impracticable. There are some stages
of the production in which bu�ers are often installed [Boysen et al., 2011]. Such bu�ers
do not only compensate production level discrepancies and failures but also allow for a
local reordering or resequencing of the products.

Bu�ers may di�er greatly between di�erent industries: the products of the electronic
industry, for instance, are small and can be stored in boxes while in the automotive in-
dustry, a product piece is a car or a truck. Not only the opportunity cost of storing
an electronic chip and a truck di�er but also the handling system to support the bu�er
operation depends on the application. While electronic components can be stored manu-
ally, a worker may not be able to move a truck without aid. In the automotive industry,
most of the bu�er usage exists between the di�erent stages of the process (body-in-white,
paint-shop, and �nal assembly) [Boysen et al., 2009c]. The operations of bu�ers at the
paint shop are described by Spieckermann et al. [2004]. These bu�ers are commonly used
to change the order of the products based on their color. After the paint-shop, another
bu�er may exist to decouple the sequence before the �nal assembly. These bu�ers, how-
ever, may be only large enough for units or dozens of units. The resequencing may also
be limited according to the bu�er organization.

Three types of bu�ers are found in the balancing literature: pull-o� tables, mix banks,
and automated storage and retrieval system (AS/RS) [Boysen et al., 2011]. Pull-o� tables
are the most simple bu�ers and are usually small in size [Boysen et al., 2011]. As the
name describes, this bu�er system consists of space at the side of the conveyor belt and
a handling system that can move products from the conveyor to the bu�er or vice-versa.
Fig. 2.9 illustrates two examples of the options such a bu�er has to o�er. Products are
moved along a conveyor from left to right. In the top part of the �gure, one of the two slots
of the bu�er is occupied with product 2. The available options are returning product 2 to
the line, assigning product 3 to the second spot of the bu�er, or send product 3 forward
to production after product 1. The bottom part of the picture brings an example, in
which the bu�er is fully occupied with products 2 and 3. The options for selecting the
next product are either to release products 2 or 3 from the bu�er or to keep them and
pass along product 4. This bu�er structure is modeled in a car resequencing problem in
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Boysen et al. [2011].
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Figure 2.9: Pull-o� table bu�er.

A second bu�er con�guration is the mix bank bu�er. In this system, the entry conveyor
belt is connected to several parallel lanes [Meissner, 2010; Taube and Minner, 2018], as
illustrated by Fig. 2.10. At the entry of a product, the system must assign it to one of
the lanes. Each lane has a �xed number of positions, in which products cannot overtake
the others. At given intervals, one of the products at the head of the lanes is chosen to
be passed along to production. This bu�er structure allows a degree of reorganization of
the products, which is however limited by the non-overtaking restriction.

Figure 2.10: Mix bank bu�er.

The third bu�er structure is called automated storage and retrieval system (AS/RS)
[Meissner, 2010]. This system is the most versatile since any product can be stored in
and retrieved from any position at any time. A graphical illustration is found in Fig.
2.11. The AS/RS works with independent slots, which can be �lled or retrieved without
any restrictions. An AS/RS with N positions can be seen as a mix bank bu�er with
N single-capacity lanes. The e�ciency of mixed banks and AS/RS are compared in the
sequencing context by Meissner [2010].
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AS/RS

Figure 2.11: Automated storage and retrieval system (AS/RS) bu�er.

Bu�ers do not only di�er in structure, but their use can also aim at di�erent objectives.
As automotive companies rely heavily on long supply chains with rigid logistic planning,
a common reordering objective is to keep the planned sequence. This way, customized
parts can be delivered within the planned horizon reducing inventory costs. Therefore,
bu�ers are often used to return products to the initial sequence if any errors or failures
occur. Examples of this resequencing objective are found in Meissner [2010] and Boysen
et al. [2011].

A bu�er system can also be used with other objectives, such as reducing the cost of
remedial actions, improving the part-level scheduling, or decreasing the set-up times in
the paint-shop. For instance, Lopes et al. [2020a] model the balancing, sequencing, and
bu�er allocation as an integrated problem to maximize the productivity of unpaced lines.
Taube and Minner [2018] model the resequencing problem for the �nal assembly. They
divide the assembly process into two parts: a �rst in which sequences can be altered, and
a second, in which products must respect the master sequencing. The approach optimizes
the sequence for multiple objectives (utility work, set-ups, and part leveling) with the
restriction that the reordering must be reversible to the original sequence.

One interesting development on the future design of assembly lines is the use of au-
tomated guided vehicles (AGV) for the transport of the pieces. According to Kampker
et al. [2017], AGVs make routing between stations possible, so that overtaking or non-
linear production sequences become possible. This would increase greatly the resequencing
capabilities of the automotive industry. The optimization of a �exible layout for the au-
tomotive industry is explored by Hottenrott and Grunow [2019]. The authors solve the
balancing problem along with an AGV �ow model to reduce the traveled distances. These
examples show how complex the balancing of assembly lines is and how new technologies
provide more �exibility for the design of production systems.



Chapter 3

Literature review on assembly line

balancing under uncertainty

The literature on the assembly line balancing problem under various forms of uncertainty
is explored in this chapter. Firstly, the surveys on assembly line balancing and related
problems are introduced and their classi�cation structure is explained. The literature is
then described based on its source of uncertainty. Finally, the contributions of this work
are described and aligned with the shown gaps in the literature.

3.1 Scope and structure

The scope of the literature analysis in this chapter is to provide a classi�cation and
overview of papers published on assembly line balancing, sequencing, and bu�er allocation
that have any uncertainty in its formulation. The review build itself up from the excellent
reviews in balancing [Boysen et al., 2007, 2008; Battaïa and Dolgui, 2013], sequencing
[Boysen et al., 2009c], resequencing [Boysen et al., 2012], disassembly [Özceylan et al.,
2019], and bu�er allocation [Weiss et al., 2019]. The existing surveys in the literature are
discussed in Section 3.2.

For the review of the literature, a classi�cation scheme is introduced in Section 3.3.
This classi�cation is divided in the following section into uncertainties in single-model
production systems (Section 3.4), uncertainties in multiple-model production systems
(Section 3.5) and uncertainties in disassembly systems (Section 3.6).

The section on single-product systems contains a review of the assembly line balancing
problem, in which stochastic and fuzzy processing times are explored. Furthermore, a
section on bu�er allocation explores the literature that combines processing time allocation
with bu�er placing.

The uncertainties on multiple-model production systems are divided into approaches
modeling uncertainty mainly in stochastic processing time and other less popular uncer-
tainties, such as uncertainty in the production sequencing and the demand.

Section 3.6 is devoted to the uncertainties of disassembly processes. The disassembly
process is not simply an assembly in the reverse order and may be a�ected by several
sources of uncertainty. As the products are in their end-of-life, the quality and integrity
of the components, for instance, is strongly uncertain.
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3.2 Existing surveys in the literature

There are multiple surveys in the literature covering several aspects of the design and
operation of production systems.

Boysen et al. [2009b] present an overview on production planning of mixed-model
assembly lines in which several levels of planning are discussed. Boysen et al. [2009b]
divide the decisions related to assembly lines into assembly line balancing, master se-
quence planning, rebalancing, sequencing, and resequencing. These problems are mostly
solved independently, but approaches that integrate multiple levels or solve them in a
hierarchical approach [Meyr, 2004] may present better e�ciency [Boysen et al., 2009b].
This integration is however hard to enforce since the di�erent levels of decisions require
information that is available at di�erent steps of the planning process.

This section points out the existing surveys to the related problems of assembly line
design and operation. The main focus is on the sources of uncertainty and the problems'
stochastic variants. The surveys are divided into the �ve levels introduced by [Boysen
et al., 2009b] (balancing, master scheduling, rebalancing, sequencing, and resequencing)
plus the topic of bu�er allocation, which is also important in production systems under
uncertainty.

3.2.1 Balancing

Since �rst introduced in a scienti�c paper in 1955 by Salveson [1955], the assembly line
balancing problem has interested several researchers and stimulates a highly active �eld
until the present days. The amount of surveys devoted to the topic illustrates well the
importance of the �eld and the vast number of publications. A non-extensive list of
review papers is composed by Baybars [1986], Ghosh and Gagnon [1989], Gagnon and
Ghosh [1991], Erel and Sarin [1998], Becker and Scholl [2006], Scholl and Becker [2006],
Boysen et al. [2007], Boysen et al. [2008], Battaïa and Dolgui [2013], Bentaha et al. [2015],
Özceylan et al. [2019], and Eghtesadifard et al. [2020].

The broad literature justi�es survey papers to specify a subset of the problem treated,
such as the simple version of the problem (SALBP) [Baybars, 1986; Scholl and Becker,
2006], heuristic procedures [Erel and Sarin, 1998], stochastic e�ects [Bentaha et al., 2015],
and many others. An excellent classi�cation of problems is given by Boysen et al. [2007],
while Eghtesadifard et al. [2020] provide a systematic review of assembly line problem
trends.

Due to the extension and number of surveys on the balancing problem, only the
stochastic or uncertain characteristics discussed in the reviews are examined in this sec-
tion. A summary of the listed surveys on assembly line balancing problem is given in
Table 3.1 along with their scope. Besides Bentaha et al. [2015], no further survey focuses
on the uncertainty of assembly-line problems.

Although the surveys di�er greatly in their scope, date, and depth, they all have in
common the strong association of uncertainty with the processing times. Among the
surveys, the distinction of deterministic and stochastic processing times is a common
criterion to sort out the literature, as in Battaïa and Dolgui [2013]. The classi�cation
of Boysen et al. [2007] contains the class �tsto� for stochastic processing times, which is
one of the two only mentions of uncertainty in the classi�cation scheme. The second
one is related to the cycle time restriction. The class �prob� relates to models in which
the cycle time must be respected with a given probability. This restriction is useful to
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model stochastic processing times (as a chance-constraint) or for mixed-model assembly
lines, in which a given proportion of models should be produced within the cycle time.
This section reviews the surveys' insights on stochastic processing times and other less
mentioned uncertainty factors, such as disassembly processes and the production system
costs.

Stochastic processing times are usually related to manual assembly lines. The insta-
bility in the work rate is justi�ed by the di�erent levels of motivation, skill, and fatigue of
workers or failures in machines or the logistic system [Becker and Scholl, 2006]. According
to Becker and Scholl [2006], the variation of the processing times is strongly related to
the task complexity. The uncertain processing times are modeled as random variables
(mostly under the assumption of a normal distribution), as fuzzy numbers, within given
intervals, or by scenario de�nitions [Battaïa and Dolgui, 2013]. Along with stochastic op-
timization, robust optimization is also an explored modeling alternative in the assembly
line balancing literature [Bentaha et al., 2015].

One important criterion for the classi�cation of the literature dealing with stochastic
processing times is how the variability is addressed. Optimization approaches can either
minimize the e�ect of uncertain processing times by distributing the variation equally
between stations or by assigning tasks so that the probability of a very loaded station
is minimized. Alternatively, the economical cost of the response to the variation can be
accounted for and integrated into the optimization. Figure 3.1 contains a classi�cation of
the usual approaches to cope with processing-time variations. The di�erent approaches
depend on the available data and how detailed the modeling of the assembly system is.
Some responses, such as employing utility work, may also require the detailed scheduling
of workers. For this response, not only the balance of the line but also the realization
of the processing times must be accounted for. The collection of reactions to processing
time variations is listed in a survey of the sequencing of mixed-model assembly lines by
Boysen et al. [2009c]. Processing time variations can be caused by stochastic processing
times or by the presence of multiple products. Although both causes are di�erent, the
modeling approaches to deal with the resulting variability are the same.

The approaches to deal with the processing variation listed in �gure 3.1 can be divided
into two major groups, the ones that do not consider a reaction and the ones that compute
the needed reaction. Within the models that do not model a reaction, the �rst possibility is
to minimize the e�ect of the variation using a proxy for the reaction. One example is given
by Kao [1976], who considers the probability of a task assignment surpassing the cycle
time and aims at its minimization. The incompletion costs are not dealt with, instead, an

Table 3.1: Summary of existing surveys about assembly line balancing and their scope.

Author(s) Scope
Baybars [1986] Solution methods for the simple assembly line balancing problem
Ghosh and Gagnon [1989] Review and analysis of assembly line balancing problem, along with assembly line

design considerations
Gagnon and Ghosh [1991] Relation between research on assembly line balancing problem and the industrial

application of methods
Erel and Sarin [1998] Heuristic methods for the assembly line balancing problem
Scholl and Becker [2006] Solution methods for the simple assembly line balancing problem
Becker and Scholl [2006] Solution methods for the generalized assembly line balancing problem
Boysen et al. [2007] Classi�cation of assembly line balancing problems
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Approaches to cope with processing time variation
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Figure 3.1: Classi�cation of the reaction approaches to cope with processing time variation.

assignment is looked for which exhibits a high completion probability. A second possibility
is to even out the variation between the stations. In the context of stochastic processing
times, Raouf and Tsui [1982] aim at the minimization of the stochastic variation in the
assignments. The same approach can be seen in the context of mixed-model assembly
lines in Thomopoulos [1970], in which the variation between the products is minimized in
a horizontal balancing approach. A third possibility occurs in unpaced assembly lines. As
the pieces move forward only when the operations are �nished, the cycle time is variable.
The handling system itself reacts accordingly to the processing-time variation. All the
other reaction possibilities refer to paced assembly lines, although it would be also possible
to implement some of the other compensations in unpaced lines as well.

The active reaction to processing-time variation is divided into whether the e�ect is
dealt with within a station or among multiple stations (or the whole line). The reactions
within a station are the use of utility work, controlling the worker speed, and repair
shops. Utility work is auxiliary work that is performed by all-around workers that aid
the processing when needed [Tsai, 1995]. Utility workers are more costly than regular
workers so that their additional use is to be minimized. There is a trade-o� between the
cost of the utility work used and the sizing of the system. A second option is to use the
worker's speed as a reaction. It is possible to operate temporarily at a higher pace so
that a product with a larger processing time can still be �nished within the cycle time.
Higher speeds, however, result in lower product quality, so the trade-o� between the costs
of the system and the losses in quality must be quanti�ed [Becker and Scholl, 2006]. The
third approach within stations is the use of repair shops along the line. If a piece is not
completed, it is sent to the repair shop and a piece previously placed in a bu�er takes
its place [Buzacott, 1999]. When it is �nished, the order is placed in the bu�er. In these
three approaches, the variation is dealt with before the piece arrives in the next station
so that the reactions do not a�ect any other station of the line.

There are also measures that in�uence more than one workstation. The �rst alternative
is to stop the whole line if any station needs more than the cycle time for the processing of
its product [Tsai, 1995]. If workers are allowed to exceed the station boundaries, �exible
or variable station bonders can be used [Dar-El and Nadivi, 1981]. This reaction gives
�exibility to cope with large processing times but may require extra coordination between
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workers. As stations' borders are not �xed in this case, one worker may block the way
of another worker. Disposal of the non-�nished workpieces is also an alternative. In this
case, lost material and work costs must be accounted for. Finally, there is also the case
of repair stations along the line or at the end of the line [Kottas and Lau, 1973]. These
stations are responsible for the completion of the tasks that could not be completed within
the cycle time. The di�erence between the �repair station�-reaction classi�ed as a �within
station compensation� lays in the e�ect on other stations. If the repair is made only at
the end of the line, the tasks which depend on the delayed task cannot be performed in
later stations. Similarly, the use of repair shops along the line without the use of bu�ers
may cause empty cycles in later stations. In summary, these four last approaches do not
react to the processing time variation within only one station. Delays in one station cause
consequences in the later stations of the line.

There are, however, several arguments against the use of uncertain processing times
in assembly line balancing models. According to Falkenauer [2005], assembly lines apply
very specialized work for small subsets of tasks, so that the production time is mostly
deterministic. Furthermore, Boysen et al. [2008] state that in the automotive industry,
the processing times are agreed upon with the workers' union and are stable for skilled
workers. There is also literature that considers the processing time of workers in training
in form of learning e�ects [Boysen et al., 2008]. In these cases, the processing time is
considered dynamic [Boysen et al., 2007].

A di�erent source of uncertainty in the balancing of assembly lines occurs when the
inverse process is performed: the product disassembly. Disassembling products is prone
to other uncertainties due to the state and quality of already used products. The survey
of Özceylan et al. [2019] on the balancing of disassembly lines points out that not only
the processing times can be stochastic, but also the quality of the pieces and the number
of subparts. Furthermore, the reliability of a disassembly process is lower than that of an
assembly process. Parts can get damaged or broken during the process. Bentaha et al.
[2015] also survey the balancing of disassembly lines. The focus of this survey is on the
stochastic processing times in assembly and disassembly lines.

The third source of uncertainty is only mentioned in the surveys, but is not explored
in any classi�cation or has any dedicated literature niche. Becker and Scholl [2006] state
that costs and pro�ts from assembly lines are di�cult to estimate. The normally used
objectives such as number of stations or cycle time are just a proxy of the given costs
or pro�ts. There is no publication of the assembly line balancing problem that focuses
explicitly on the uncertainty on equipment or design-related costs.

3.2.2 Master scheduling

The master scheduling links the long-term con�guration decisions of a production sys-
tem to the short-term decision of assigning the individual orders to producing periods.
According to Boysen et al. [2009b], the master scheduling of the automotive industry
considers time horizons with lengths of about a month and is used to decide the produc-
tion of individual shifts. According to the survey on production planning of mixed-model
assembly lines by Boysen et al. [2009b], the topic is hardly explored in the literature.

The master scheduling objective is to plan the production of the individual customer
orders. Each order has a due date, which may cause a penalty if the delivery is delayed.
Analogously, producing too early induces holding costs. The order assignments must also
consider the production restrictions, such as time and resource availability. Boysen et al.
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[2009b] state that in practice, the master scheduling is mainly dominated by the marketing
and sales department, which may assign the production orders in the order the products
are sold.

Boysen et al. [2009b] present a basic model for the master scheduling along with
extensions such as capacity and demand adjustments. Demand adjustments consist of
the possibility of rejecting orders and renegotiating due dates. The production capacity
can be altered by an assembly line recon�guration or rebalancing, by adjusting the number
of shifts and their lengths, or by subcontracting.

The master scheduling problem is modeled by Boysen et al. [2009b] as a deterministic
problem. The authors state, however, that a rolling horizon scheme is more adequate for
the implementation of the solutions. This way, only one shift or day is implemented at
a time and the others are reoptimized considering the new sales information that may
become available.

3.2.3 Rebalancing

There are no survey papers on the rebalancing of assembly lines yet. For more information
about the literature, Gamberini et al. [2006] or the assembly line balancing surveys of
Battaïa and Dolgui [2013] and Eghtesadifard et al. [2020] are recommended.

The rebalancing of assembly lines deals with a trigger such as a change in cycle time,
demand mix, or product variation and may have restrictions due to the commitment of a
previous assembly line implementation. Among the uncertainties in solving such a prob-
lem, the correct estimation of moving or adjusting cost can be of interest. Furthermore,
the variability of the future demand may also be a source of uncertainty.

3.2.4 Sequence planning or sequencing

The sequencing problem occurs in assembly lines with multiple models, in which the
order of the products is important for the cost or productivity calculation. According to
the decision levels of Boysen et al. [2009b], the sequencing of products is an operational
decision that is performed every day or at every production shift.

Boysen et al. [2009c] present a survey on sequencing approaches applied to mixed-
model assembly lines. The authors identify three major approaches to sequence the pro-
duction in assembly lines: mixed-model sequencing, car sequencing, and level scheduling.
The mixed-model sequencing models detailed processing times and worker positions for
a sequence of models. More and less loaded products are intercalated to compensate for
each other. The car sequencing is a less detailed variant of the workload modeling ap-
proach, in which the sequences are restricted with simple rules. These rules have an H:N
form, which means that at most H models with a certain characteristic may be present in a
sequence of N products. A third approach is the level scheduling, which aims at balancing
part consumption. A stable part usage goes along with the Just-in-Time supply chains
that are typically encountered in the automotive industry. Balanced consumption levels
result in lower inventory levels and are used as a proxy for the material supply costs.

The approaches surveyed by Boysen et al. [2009c] concentrate on paced lines without
bu�ers with deterministic and known demand. In the whole survey, only one reference
[Chutima and Yiangkamolsing, 2003] deals with non-deterministic data, in the form of
fuzzy processing times.
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3.2.5 Resequencing

The resequencing problem consists of changing the sequence of products within the pro-
duction process. The resequencing in mixed-model assembly lines is surveyed by Boysen
et al. [2012], who present a classi�cation scheme based on �ve factors.

The �rst factor is the trigger of the resequencing. Boysen et al. [2012] divide the
literature between reactive and proactive approaches. Reactive approaches aim to correct
or improve the sequence after a disturbance occurred. These disturbances can be machine
failures, delays in the part material deliveries, production or quality errors, etc. Proactive
resequencing, on the other hand, uses the reordering �exibility according to the multiple
sequencing objectives along the processing process. The proactive approaches are usually
applied in the boundaries of the body-in-white and paint-shop or paint-shop and �nal
assembly so that a better sequence for each individual phase can be achieved.

The bu�er con�guration is the second criterion in the classi�cation. Bu�ers can be
implemented as pull-o� tables, mix banks, or AS/RS systems as described in Section 2.6.
Furthermore, Boysen et al. [2012] also consider virtual resequencing, which does not use
bu�ers. The virtual variant reassigns physical products to customer orders. If a speci�c
component for an order is not delivered in time, but a second order is similar to the
product, the physical product can be assigned to the second order. The �rst order is then
delayed and produced later.

The third classi�cation criterion is the problem's decision variables. Firstly, the prob-
lem can be de�ned as an installation or operation problem. Installation problems focus on
the placing, sizing, and selecting of the bu�er system. Operational problems optimize the
sequence itself and are further divided into static and online problems. Static problems
present all the information beforehand, while online problems are dynamic and require
decisions without full knowledge of the future sequence.

The di�erent objective functions are described as the fourth classi�cation criterion.
One common objective is the restoration of the planned sequence after perturbations.
Another approach is to use an objective function of a sequencing problem. The listed
related problems are paint batching, mixed-model sequencing, car sequencing, and level
scheduling [Boysen et al., 2012]. Finally, the �fth criterion is the solution method. Boysen
et al. [2012] divide the literature into exact, heuristic, and simulation methods.

The resequencing problem is a response to uncertain events that disrupt the planned
production sequence. This problem can be either modeled as a deterministic response
given all information of the sequence and disruption or as a stochastic or online problem
[Boysen et al., 2012]. When the information is incomplete, uncertain, or there is not
enough time to consider the whole system, an online approach is more appropriate.

3.2.6 Bu�er allocation

The literature on bu�er allocation is only partly related to the literature on assembly line
balancing or sequencing. Much of the literature on assembly lines considers paced lines
and no bu�ers, while most of the literature on bu�er allocation considers the production
system to be given. Considering the di�erences in methods and applications, the surveys
on bu�er allocation are described in more detail in this section among their characteristics
and the classi�cation of the bu�er allocation literature.

The sizing and placing of bu�ers in the literature is named the Bu�er Allocation

Problem (BAP). Bu�ers are usually used to compensate stochastic factors by decoupling
the material �ow, although they can also be used for some deterministic compensations.
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The literature on bu�er allocation is usually clustered in whether the production system
is balanced and in whether the machines are reliable [Demir et al., 2014].

A balanced production system has all its machines operating at the same rate. That
is, their processing times are identical, if they are deterministic, or they have the same
mean if they are taken as stochastic [Demir et al., 2014]. An unbalanced system presents
workstations with larger expected processing times than the average. Hillier and Boling
[1979] show that the imbalance can increase production levels, if the larger processing
times are concentrated at the beginning and the end of the line, leaving the center of the
line with smaller expected processing times. Because of the shape of the processing-time
curve based on stations, this e�ect is named bowl phenomenon [Hillier and Boling, 1979].
One of the �rst surveys on the topic is published by Smunt and Perkins [1985] in which
the e�ects of imbalance on unpaced stochastic lines are discussed. Smunt and Perkins
[1985] state that the bowl phenomenon appears only situationally, mainly in short lines
with high processing-time variance. A more recent survey on the unbalanced e�ects is
given by Hudson et al. [2015]. This latter survey points out that the imbalance (or the
bowl phenomenon) can occur with the mean values of the processing times or with the
variations of the processing times as well.

Another important classi�cation element for bu�er allocation problems is the reliability
of machines. An unreliable machine may break down and may need repair before resuming
the production activities. Bu�ers before a machine can accumulate workpieces of previous
machines so that they are not blocked during the repair. Similarly, an empty bu�er after
the machine assures that the next machines can still temporarily work on the workpieces
stored in the bu�er.

In 2000, Gershwin and Schor [2000] present a survey on solution methods for the bu�er
allocation problem. The authors classify the literature based on the di�erent objective
functions, whether the models are continuous or discrete, and the used solution method.

The survey from Demir et al. [2014] extends the survey from Gershwin and Schor
[2000], covering articles from 1998 up to 2012. Demir et al. [2014] propose a more formal
classi�cation scheme, in which papers are classi�ed based on the machine reliability, the
topology of the production system, the solution methodology, and the objective function.
In the considered period, Demir et al. [2014] gather 41 references optimizing reliable sys-
tems, while 54 focus on unreliable machines. Among the unreliable systems, the work
on quality inspection from Han and Park [2002] is also considered. Demir et al. [2014]
classify the system topology into serial lines, parallel lines, general networks, assembly
lines, �exible manufacturing systems (FMS), and cellular manufacturing systems (CMS).
Demir et al. [2014] point out that solution methods are usually formed by a generative
and an evaluative method. Evaluative methods are responsible for calculating or esti-
mating the value of a given bu�er con�guration. The evaluative methods are divided
into analytic and simulation-based procedures. According to Demir et al. [2014], analytic
methods can be both exact or approximate. The exact methods are limited to very small
lines, while the approximate methods aim at decomposition and/or aggregation of small
systems into larger ones or vice-versa. Even though larger lines can be solved this way,
analytical methods are restricted to strong assumptions [Demir et al., 2014]. These as-
sumptions generally are deterministic or exponentially distributed processing times and
geometric or exponential failure rates. The generative methods are used to propose bu�er
assignments for a test with the evaluative methods. Demir et al. [2014] point out that
enumerative methods are limited to very small problems, while metaheuristics dominate
the literature for larger problems. Finally, based on the objective function, articles are di-
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vided into production maximization, bu�er size minimization, system cost minimization,
pro�t maximization, work-in-process (WIP) minimization, and other objectives.

The most extensive and up-to-date survey on the bu�er allocation problem is given by
Weiss et al. [2019]. In this survey, the literature is classi�ed in detail based on the charac-
teristics of the �ow line, its objective functions and constraints, and the employed solution
method. Weiss et al. [2019] survey only papers dealing with some kind of uncertainty.
They point out that the allocation of bu�ers is an NP-Hard problem, and that analytic
solutions can only be found for very small instances under very strict assumptions.

Weiss et al. [2019] extensively detail the di�erences in �ow systems. Their classi�cation
takes into account the control mechanism for the transport of pieces, the supply of raw
material, the blocking type, the reliability of machines, and whether the system is balanced
or unbalanced. The control mechanism is divided into a classic �ow system with unitary
products and a control system with pallets or skids. The supply of raw materials is
classi�ed into saturated or unsaturated. Saturated supply assumes that there is enough
raw material at all times at the start of the line. Unsaturated systems operate with an
entry bu�er and may depend on random arrivals or some order policy (such as (s,q) or
(r,S)). The same kind of uncertainty can also be assumed for the output of the line, in
form of demand uncertainty. The blocking of machines is distinguished into after station
(BAS) and before station (BBS). A blocking after station occurs when the output bu�er
of a station is full and the station cannot forward the next �nished product so that the
machine must wait for a vacant bu�er. The BBS condition is stricter since a machine
can only start its operation when a position in the next bu�er is available. Finally, the
unreliability of machines is further classi�ed into operation or time-dependent. The failure
rate, repair rate, and processing-time distributions are also described in the survey for
each one of the references. Most common are the exponential or the Erlang distributions
for the processing times of reliable machines while unreliable machines are modeled with
deterministic processing times in the majority of papers. The time between failures is
mostly considered as geometrically or exponentially distributions.

The classi�cation of objectives in Weiss et al. [2019] is based on �ve major measure-
ments: throughput, work-in-progress, time-in-system, customer service, and bu�er size.
Weiss et al. [2019] describe the two most common versions of the problem, the minimiza-
tion of the bu�er size for a given expected productivity level, and the maximization of
the expected production for a given bu�er size. Furthermore, Weiss et al. [2019] describe
the variations of the mentioned restrictions, such as non-blocking probabilities or service
level restrictions for the bu�er size and throughput problems. The combinations of two
or more of the �ve main objective functions are also described, discussing the trade-o�s
observed in each reference.

The classi�cation of the solution methods fromWeiss et al. [2019] is also more extensive
than the one by Demir et al. [2014]. Weiss et al. [2019] divide methods into explicit solu-
tions, integrated optimization methods, and iterative optimization methods. The explicit
solutions are either exact analytical methods, analytical methods based on approxima-
tions, or methods based on optimality conditions. Similar to Demir et al. [2014], Weiss
et al. [2019] state that exact methods are limited to small and restricted systems. The
integrated optimization methods rely on either samples of realizations or analytical results
for the generation of models. Finally, iterative optimization methods are the ones that
can be divided into the generative and the evaluation part, such as described by Demir
et al. [2014]. Weiss et al. [2019] classify iterative methods into enumerations, metaheuris-
tics, search algorithms, and dynamic programming. Examples of search algorithms are



Chapter 3. Literature review on assembly line balancing under uncertainty 31

bottleneck-based search, gradient algorithms, and derivative-free algorithms.
This overview on surveys of bu�er allocation problems shows that the bu�er allocation

is often used to compensate for stochastic e�ects, mostly stochastic processing times and
unreliable machines. In the majority of the reported references, the production system is
given and only the bu�er is considered a problem variable.

3.3 Classi�cation scheme

To present the literature in an orderly manner, a classi�cation scheme is proposed. This
classi�cation is focused on the modeling of the uncertainty presented in each article.
There are also other important factors for contributions on assembly line balancing that
are independent of the nature of the uncertainties. Assembly lines may contain set-up
times, parallel stations, or present themselves in a U-form. In order not to neglect these
characteristics, the presentation of the articles' features also considers the assembly line
balancing classi�cation of Boysen et al. [2007]. This classi�cation uses tuples {α, β, γ}
to describe the tasks, line, and objective function characteristics, respectively. Within
the tuples, acronyms are used to express the presence of a characteristic in the treated
problem. The classi�cation scheme is described in Tables 3.2 - 3.4.

The possible values for α are given in Table 3.2 and represent either task or precedence
graph characteristics. Table 3.3 contains the classi�cation scheme for the station and line
characteristics, expressed using β. The objective functions are expressed by γ and are
summarized in Table 3.4.

As Boysen et al. [2007] already predict and recommend, the classi�cation may be ex-
tended to include further developments or problem variations. When needed, the new
items are explained in the next sections as they appear. Along with the presented classi-
�cation scheme based on {α, β, γ}, the source and type of uncertainty are described, as
well as the modeling approach concerning restrictions and objective function.

3.4 Uncertainties in single-model production systems

3.4.1 Uncertainties in the balancing

Since 2007, di�erent approaches have been published, so that the {α, β, γ} classi�cation
of Boysen et al. [2007] has to be extended. Table 3.5 contains the new elements used in
the classi�cation of balancing papers with uncertainties in the processing times. The most
considerable di�erences are di�erent objective functions and the further division of the
uncertainty factors. Uncertain processing times, for instance, are divided into stochastic
(sto), within intervals (int), fuzzy (fuzzy), worker dependent (worker), and compressible
(comp).

The extension of the classi�cation shows the richness of possibilities to model stochas-
ticity in assembly lines. The approaches di�er based on the modeled assembly line, the
reactions to the stochasticity (as shown in Fig. 3.1 on page 25), and whether the e�ect of
stochasticity is modeled as a restriction or aimed for at the objective function. The list
of abbreviations used for the contributions is given in Table 3.6.

The proposed classi�cation divides the literature into three groups: stochastic ap-
proaches which do not consider remedial actions; stochastic approaches which directly
consider the cost of remedial actions; and robust optimization approaches.
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Table 3.2: The classi�cation scheme of Boysen et al. [2007] for the precedence graph character-
istics.

Precedence Graph Characteristics

Product speci�c precedence graphs

α1 = mix Mixed-model production
α1 = mult Multi-model production
α1 = ◦ Single-model production
Structure of the precedence graph

α2 = spec Restriction to a special precedence graph structure
α2 = ◦ Precedence graph can have any acyclic structure
Processing times

α3 = tsto Stochastic processing times
α3 = tdyn Dynamic processing times (e.g. learning e�ects)
α3 = ◦ Processing times are static and deterministic
Sequence-dependent task time increments

α4 = ∆tdir Caused by direct succession of tasks (e.g. tool change)
α4 = ∆tindir Caused by succession of tasks (tasks hinder each other)
α4 = ◦ Sequence-dependent time increments are not considered
Assignment restrictions

α5 = link Linked tasks have to be assigned to the same station
α5 = inc Incompatible tasks cannot be combined at a station
α5 = cum Cumulative restriction of task-station-assignment
α5 = �x Fixed tasks can only be assigned to a particular station
α5 = excl Tasks may not be assigned to a particular station
α5 = type Task have to be assigned to a certain type of station
α5 = min Minimum distances between tasks have to be observed
α5 = max Maximum distances between tasks gave to be observed
α5 = ◦ No assignment restrictions are considered
Processing alternatives

α6= paλ

Processing alternatives; with λ ∈ {◦, prec,subgraph}
λ = ◦: Processing times and costs are altered
λ = prec: Precedence constraints are additionally altered
λ = subgraph: Subgraphs are additionally altered

α6 = ◦ Processing alternatives are not considered
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Table 3.3: The classi�cation scheme of Boysen et al. [2007] for the stations and line character-
istics.

Station and Line Characteristics

Movement of workpieces

β1 = ◦λυ

Paced line; with λ ∈ {◦, each,prob} and υ ∈ {◦,div}
λ = ◦: (Average) work content restricted by cycle time
λ = each: Each model must ful�ll the cycle time
λ = prob: Cycle time is obeyed with a given probability
υ = ◦: Single global cycle time
υ = div: Local cycle times

β1 = unpacλ
Unpaced line; with λ ∈ {◦, sync}
λ = ◦: Asynchronous line
λ = syn: Synchronous line

Line layout

β2 = ◦ Serial line

β2 = uλ
U-shaped line; with λ ∈ {◦, n}
λ = ◦: The line forms a single U
λ = n: Multiples Us forming an n-U line

Parallelization

β3 = plineλ Parallel lines
β3 = pstatλ Parallel stations
β3 = pworkλ Parallel working places within a station
β3 = ◦ Neither type of parallelization is considered
λ ∈ {◦, 2, 3, ...}: Maximum level of parallelization; ◦ = unrestricted
Resource assignment

β4 = equip Equipment selection problem

β4 = resλ

Equipment design problem; with λ ∈ {◦, 01,max}
λ = 01: If two tasks share a resource, investment costs are reduced at a station
λ = max: Most challenging task de�nes the needed quali�cation level of a resource
λ = ◦: Other type of synergy and/or dependency

β4 = ◦ Resources are not considered explicitly
Station-dependent time increments

β5 = ∆tunp Unproductive activities at a station are considered
β5 = ◦ Station-dependent time increments are not regarded
Additional con�guration aspects

β6 = bu�er Bu�ers have to be allocated and dimensioned
β6 = feeder Feeder lines are to be balanced simultaneously
β6 = mat Material boxes need to be positioned and dimensioned
β6 = change Machines for position changes of workpieces required
β6 = ◦ No additional aspects of line con�guration are regarded

Table 3.4: The classi�cation scheme of Boysen et al. [2007] for the objectives.

Objectives

γ = m Minimize the number of stations m
γ = c Minimize the cycle time c
γ = E Maximize line e�ciency E
γ = Co Cost minimization
γ = Pr Pro�t maximization

γ = SSLλ
Station times are to be smoothed; with λ ∈ {stat,line}
λ = stat: Within a station (horizontal balancing)
λ = line: Between stations (vertical balancing)

γ = score Minimize or maximize some composite score
γ = ◦ Only feasible solutions are searched for
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Table 3.5: Extra elements to the classi�cation Boysen et al. [2007] for the single model contri-
butions.

Precedence Graph Characteristics

Processing times

α3 = tint Processing times within intervals [a, b]

α3 = tfuzzy Fuzzy processing times
α3 = tworker Processing time dependent on worker
α3 = tcomp Compressible processing times
Worker requirements

α7 = mWOλ Multiple (λ) workers are simultaneously required for the task
α7 = ◦ Tasks are performed by only one worker or machine
Product demand

α8 = demsce The product demand is modeled as a collection of possible scenarios
α8 = ◦ Demand is deterministic and known

Station and Line Characteristics

β1 = probθ
θ = 2: Cycle time is obeyed with a given probability in both sides of a two-sided station
θ = u: Cycle time is obeyed whit a given probability in both legs of a station in a u-line
θ = ◦: Cycle time is obeyed whit a given probability in a station of a straight line

β1 =
∏
prob Cycle time is obeyed with a given probability in all stations simultaneously

β1 = Γ tasks Cycle time is obeyed even with the deviation of the processing times of Γ tasks in a station

Objectives

γ = m2 Minimization of the number of stations and length of the line of a two-sided assembly line
γ = cWC Minimization of worst-case scenario (WS) for the cycle time
γ = idle Minimization of the sum of the idle time
γ = min prob Maximization of the minimal probability of non completion in any station
γ =

∑
prob Minimization of the sum non completion probability of the stations

γ = RB Minimization/maximization of a rebalancing measure

γ = Coλ

λ = m: Station or work cost minimization
λ = pstat: Duplication cost minimization
λ =

∏
prob: Minimization of the cost of processing failure or scrappage because of incompletion

λ = compPT: Minimization of the cost compressible processing times
λ = inc: Minimization of the incompletion cost

γ = E(UW) Minimization of the expected utility work
Subscript f Fuzzy objective

Table 3.6: Abbreviations used for the papers' contributions.

Contributions

BB Branch-and-bound
BD Benders' decomposition
CA Complexity analysis
ChC Chance-constraint formulation
DP Dynamic programming
DW Dantzig-Wolfe decomposition
GA Genetic algorithm
GR Graph-based approach
HI Improvement heuristic
HS Heuristic approach
M Mathematical programming model
OMH Other metaheuristic approach
PSO Particle swarm optimization
SA Simulated annealing
StA Stability or sensitivity analysis



Chapter 3. Literature review on assembly line balancing under uncertainty 35

Stochastic approaches that do not consider remedial actions

One of the simplest formulations for balancing with stochastic processing times considers
that every assignment has to be feasible with respect to the cycle time for a given prob-
ability. This approach is already present in the classi�cation of Boysen et al. [2007] as
simply β1 = prob and has its �rst reference on the heuristic works by Kao [1976, 1979].
In this approach, the reliability levels used are �xed at 90% or 95%. Other solution pro-
cedures for this problem de�nition, including exact approaches, are given by Betts and
Mahmoud [1989]; Carraway [1989]; Henig [1986]; Leitold et al. [2019]; Nkasu and Leung
[1995]. Sphicas and Silverman [1976] show that this problem is equivalent to the deter-
ministic approach for processing time distributions with only one parameter (Poisson,
gamma, binomial, negative binomial, chi-square, and normal distribution with the pro-
cessing time variation as a �xed proportion of the average processing time σ2 = k · µ).
The probability constraint is also extended to other forms of assembly lines. U-shaped
lines present stations that contain tasks in both the beginning and the end parts of the
stations. The probabilistic constraint is then adapted to consider both parts of the sta-
tion [A§pak and Gökçen, 2007; Bagher et al., 2011; Chiang and Urban, 2006; Guerriero
and Miltenburg, 2003; Urban and Chiang, 2006]. Similarly, two-sided assembly lines have
mated stations, which must be considered together for the probability of completion [Öz-
can, 2010; Chiang et al., 2016]. Delice et al. [2016] consider two-sided U-shaped lines, for
which both concepts must be combined.

Stochastic problems with β1 = prob are easily integrated into other methods [Boysen
and Fliedner, 2008]. For a given assignment and a con�dence level α, the feasibility
check is a simple calculation. This modeling option is therefore well suited to heuristic
or metaheuristic approaches in further ALBP extensions [Cakir et al., 2011; Dong et al.,
2018; Raouf and Tsui, 1982; Tang et al., 2017]. For exact methods, the feasibility test is
also easy when the enumeration of the solution is performed station-wise [Henig, 1986].
For task-based enumerations, dominance rules that are valid for the SALBP version of
the problem cannot be used or must be adapted to the stochastic problem [Carraway,
1989; Kao, 1976, 1979; Sniedovich, 1981]. The probabilistic constraints for this class of
problem are also integrated into some variants of mathematical programming. A§pak and
Gökçen [2007]; Özcan [2010]; Urban and Chiang [2006]; Nourmohammadi et al. [2019]
present chance-constraints which are used in mixed-integer programming or non-linear
programming formulations.

A related variation of the β1 = prob model approach is the β1 =
∏

prob presented by
Liu et al. [2005]. The authors use a restriction on the reliability of the entire assembly
line, calculated as the product of the individual stations' reliability. This measurement
does not allow to consider the stations independently as β1 = prob so that the entire as-
signment must be evaluated as a whole. The interdependence of stations brings di�culties
for procedures based on incomplete enumeration such as branch-and-bound or dynamic
programming since dominance rules or bounds are more di�cult to obtain. Liu et al.
[2005], however, propose heuristic procedures for start solutions and their improvement.

Another possibility of modeling uncertainty without considering the remedial actions is
based on an indirect measure or a probability minimization. Starting by indirect measures,
the objective functions γ = SSLstat and γ = SSLline, from the classi�cation by Boysen
et al. [2007], correspond to the horizontal and vertical balancing, respectively. These
approaches are used mostly for the balancing of multiple product models, but they also
�nd application in stochastic formulations. The �rst approach is due to Moodie and
Young [1965]; Reeve and Thomas [1973], who assume that a well-distributed workload
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will result in a high-quality balancing. This objective is also used in a fuzzy approach by
Tsujimura et al. [1995] and in one objective of several multi-objective approaches [Saif,
Guan, Wang and Mirza, 2014; Saif, Guan, Liu, Zhang and Wang, 2014; Suresh and Sahu,
1994; Suresh et al., 1996; Zacharia and Nearchou, 2012]. The direct minimization of the
non-completion probabilities may be present in di�erent forms. Henig [1986] originally
proposes a dynamic programming approach to minimize the number of stations subject to
a minimal completion probability. The author shows that the enumeration procedure can
be altered to maximize the stations' reliability for a given cycle time. In this approach,
the minimal level of any station reliability is then maximized (γ = min prob). The sum
of the individual completion probabilities (γ =

∑
prob) appears in compound objective

functions as in Baykaso§lu and Özbak�r [2007]; Saif et al. [2017]; Shin and Min [1991]
or as one of multiple objectives in Saif, Guan, Wang and Mirza [2014]. Similarly, the
product of the completion probabilities (γ =

∏
prob) appears in Saif et al. [2017]; Suresh

and Sahu [1994]; Suresh et al. [1996].

Stochastic approaches based on the cost of remedial actions

The most common remedial actions are summarized in Fig. 3.1 on page 25 and include
the use of utility work, line stoppage, scrappage or disposal of the product, or repair at the
end of the line. Depending on the used method, the operational cost and the respective
solution method for the problem changes. Therefore, cost minimization approaches are
strongly linked to the physical implementation of a system.

The active reactions with compensations within a station assume that the uncertainty
will be dealt with before the product reaches the next station. This assumption simpli�es
an optimization procedure since it allows to treat stations independently. That is, the
incompletion of one station does not a�ect its successors. Although this method is simpler
than the within-line compensation, only a few approaches explicitly minimize the within-
station compensation costs. The only example encountered is given by Shin and Min
[1991], for which the corrections are made by neighboring workers, managers, or utility
workers. The authors minimize the cost based on the sum of the probabilities of when
workers need aid (γ = Co

∑
prob). This objective function is related to the number of times

a utility worker is required, which multiplied by a cost factor is an expectation of the
utility-work cost. An alternative would be to compute the required utility work duration
to estimate this cost.

A second remedial action is strongly related to the product of the completion prob-
abilities (γ =

∏
prob). Carter and Silverman [1984] minimize the cost under the as-

sumption that the non-completed products are discarded. As there is a probability of
non-completion in each station, the overall completion probability is based on the prod-
uct of the individual station probabilities.

The cost of stopping the assembly line (γ = Costop) if any station requires more pro-
cessing time than the cycle time is explored by Lyu [1997] as well as Silverman and Carter
[1986]. The related cost is also correlated to the product of the individual completion
probabilities, but they should be weighted by the stoppage duration. Since the cost com-
putation depends on the numerical calculation of an integral, only heuristic approaches
are used for this class of problem.

Accounting for incompletion costs which are �nished at the end of the line is the
modeling choice for most of the cost-oriented literature on stochastic processing times.
The �rst paper for this approach is due to Kottas and Lau [1973], who only describe an
approximation for the problem. In the case of incompletion, not only the non-�nished task
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has to be performed again at the end of the line, but all its successors are also deemed to
be incomplete. In their �rst approach, Kottas and Lau [1973] consider the incompletion
probabilities for each station independently, only summing the cost of reworking the task
and their successors. In two follow-up papers, Kottas and Lau [1976, 1981] also consider
the interrelationships between stations, since a non-completed task alters the expected
processing times of the next stations and their respective completion probability. For
this class of problem, not only the assignment of tasks to stations is important, but also
their sequence within a station. As tasks are performed in a given order, the last task
has a higher non-completion probability. The problem is also considered by Sarin and
Erel [1990]; Sarin et al. [1999]; Shin and Min [1991] in its base form, Erel et al. [2005]
in U-lines, Gamberini et al. [2006, 2009] in the rebalancing context, and Shtub [1984]
for parallel workers. The only non-heuristic approach is a dynamic program by Sarin
and Erel [1990], which is limited to small instances. Larger instances are solved with a
heuristic version of the enumeration procedure. A simpli�cation of the problem is found
in Shin and Min [1991], who consider that a non-�nished product causes empty cycles in
the following stations, instead of allowing the non-blocked tasks to be performed.

Approaches based on solution robustness

The robustness of a solution already appeared as a research topic in terms of processing-
time uncertainty, data uncertainty, and system reliability.

An important trend of approaches based on solution robustness for the balancing of
assembly lines under uncertain processing times is based on processing-time intervals. An
interval [a, b] re�ects that the lower bound of the distribution a is the normal processing
time of a task. It is, however, possible due to the uncertainties, that the processing time
increases up to a value b. These robust optimization approaches are based upon the
supposition that not all tasks would assume their upper value at the same time.

The �rst mention of robustness on a balancing problem is due to Sotskov et al. [2006],
who propose a stability analysis of balancing solutions. They de�ne the stability radius of
a solution as the amount of processing time that can be changed without invalidating the
solution feasibility and optimality for the minimization of the number of stations. A task
assignment with the sum of processing times equal to the cycle time, for instance, has a
stability radius of zero, since any increase will make the assignment infeasible. Sotskov
et al. [2006] propose an algorithm for the calculation of the radius for a given balancing
solution. Further studies explore the stability of solutions for other objective functions,
such as cycle time [Lai et al., 2016], line e�ciency [Gurevsky et al., 2012; Lai et al., 2019],
and number of stations under the possibility of parallelization [Gurevsky, Battaïa and
Dolgui, 2013].

Dolgui and Kovalev [2012] conduct a complexity analysis of assembly-line problems
under uncertain processing times within intervals. They consider several variations of
the problem and prove that the balancing problem for cycle time minimization under
scenarios of processing times is strongly NP-Hard. Furthermore, the authors propose
dynamic programming approaches for some classes of the problem.

The robust approach can also be de�ned as an optimization problem. For this class,
the restriction β1 = Γ tasks is usually applied. In this approach, robustness is de�ned
as the ability to assure feasibility even if Γ tasks (and alternatively a given percentage
of tasks) assume their maximal value of the interval processing time. This problem is
solved for di�erent objective functions, such as the minimization of the number of stations
[Gurevsky et al., 2012; Pereira and Álvarez-Miranda, 2018], the minimization of the cycle
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time [Hazir et al., 2013] or for di�erent line characteristics such as U-shaped lines [Hazir
et al., 2015] or heterogeneous workers [Moreira et al., 2015]. An optimization of a di�erent
perspective is given by Rossi et al. [2016], who do not search for the best cycle time or
the number of stations, but for the most stable solution in terms of stability radius.

A second modeling possibility for the robust optimization problem is to consider either
the worst case or the α-worst case scenario. The α-worst case scenario optimizes for the
α percentile solution. That is, for a value of 90%, the worst 10% are not considered in
the computation. This way, an assignment is robust for most of the scenarios, but it does
not need to be over-pessimistic in considering all possible scenarios. The α-worst robust
optimization for stochastic processing times can be found in Saif, Guan, Liu, Zhang and
Wang [2014]. Pereira [2018] considers the combination of all possible scenarios for the
processing time based on intervals. His procedure minimizes the regret of the worst-case
scenario. Regret is de�ned as the di�erence between the objective value of the problem
and the optimal value for the speci�c scenario. The formulation uses a min-max expression
for the regret based on the cycle time using heterogeneous workers.

An alternative approach to consider robustness is fuzzy modeling. In this approach,
the data is considered uncertain and is described as linguistic variables. In the assembly
line balancing context, processing time, cycle time, and even the number of stations can
be considered fuzzy. Tsujimura et al. [1995] present the �rst contribution in the balancing
literature, in which fuzzy processing times are smoothened among the stations. Other
versions of the problem, such as the minimization of the number of stations (along with
a second smoothening objective) is presented by Zacharia and Nearchou [2012] and the
maximization of line e�ciency by Zacharia and Nearchou [2013].

In a di�erent �eld of research, Müller et al. [2016, 2018] solve the balancing problem
with the objective of increasing the robustness of the line with respect to failures. They
consider that one station can serve as a backup for other stations if the stations are
equipped with compatible equipment and the precedence constraints are obeyed. In this
formulation, if a failure occurs in any station, a containment plan is already prepared and
optimized to redistribute the tasks between the remaining stations. As this approach is
di�erent from all the others in the literature, the characteristics of machine failure and
redundancy maximization are not added to the classi�cation scheme.

Summary of the literature classi�cation

The summary with all reviewed references for the stochastic balancing of single-model
assembly lines with uncertainty in the processing time is given in Table 3.7.

Some terms in the table are not contained in the classi�cation: Müller et al. [2016,
2018] maximize the redundancy of an assembly line considering machine failures ; the Part-
feeding objective from Nourmohammadi et al. [2019] refers to a logistic objective function
and is therefore not added to the classi�cation scheme; Rossi et al. [2016] maximize the
stability radius of an optimal solution in terms of the number of tasks with possibly
increased processing times; Zhang et al. [2014, 2017] minimize the assignment costs based
on scenarios, although it remains to be speci�ed, what these costs represent. Objective
functions separated by a semi column indicate multiple objective functions, the slash (/)
symbol is used for alternative objective functions, while the plus sign (+) indicates that
the objective function is a (weighted) sum of multiple terms. The abbreviations used in
Table 3.7 are explained in Table 3.6.
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Table 3.7: Literature overview for the stochastic balancing of single-model assembly lines.

Author Characteristics Contribution
A§pak and Gökçen [2007] [ tsto | probu, u | m] M, HS, ChC
Bagher et al. [2011] [ tsto | probu, u | m] OMH
Baykaso§lu and Özbak�r [2007] [ tsto | u | m + idle +

∑
prob] GA

Betts and Mahmoud [1989] [ tsto | prob | m] HS

Boysen and Fliedner [2008]
[ tsto, link, inc, cum, pa |

HS, GR
prob, pstat, ptask, res01, resMax, u | Pr]

Cakir et al. [2011] [ tsto | prob, pstat | SSLstat; m2] SA
Carraway [1989] [ tsto | prob | m] DP
Carter and Silverman [1984] [ tsto | | Com,

∏
prob] HS

Chiang and Urban [2006] [ tsto | probu, u | m] HS, HI
Chiang et al. [2016] [ tsto | pwork2, prob2 | m2] PSO
Delice et al. [2016] [ tsto | pwork2, prob2,u, u | m2] GA
Dolgui and Kovalev [2012] [ tint | | c] CA
Dong et al. [2018] [ tint, tcomp, link, exc | prob | c; CocompPT] PSO, SA
Erel et al. [2005] [ tsto | u | Com;inc] HS
Gamberini et al. [2006] [ tsto | | CoE;inc; RB] HS
Gamberini et al. [2009] [ tsto | | CoE;inc; RB] HS, GA
Guerriero and Miltenburg [2003] [ tsto | probu, u | m] GR
Gurevsky et al. [2012] [ tint | | E] StA
Gurevsky, Hazir, Battaïa and Dolgui [2013] [ tint, exc | Γ tasks | m] BB
Gurevsky, Battaïa and Dolgui [2013] [ tint, exc | pstat | Com;pstat] StA
Hazir et al. [2013] [ tint | Γ tasks | c] BD
Hazir et al. [2015] [ tint | Γ tasks, u | c] BD
Henig [1986] [ tsto | prob | m / c / min prob] DP
Kao [1976] [ tsto | prob | m] DP
Kao [1979] [ tsto | prob | m] DP
Kottas and Lau [1973] [ tsto | | Coinc] HS
Kottas and Lau [1976] [ tsto | | Coinc] HS
Kottas and Lau [1981] [ tsto | | Coinc] HS
Lai et al. [2016] [ tint, exc | | c] StA
Lai et al. [2019] [ tint, exc | | E] StA
Leitold et al. [2019] [ tsto | prob | m] SA
Liu et al. [2005] [ tsto |

∏
prob | c] HS, HI

Lyu [1997] [ tsto | | Costop] HS
Moodie and Young [1965] [ tsto | | SSLline] HS
Moreira et al. [2015] [ tint, tWorker | Γ tasks | m] M, HS
Müller et al. [2018] [ | equip, failure | redundancy] M
Müller et al. [2018] [ | equip, failure | redundancy] GA
Nkasu and Leung [1995] [ tsto | prob | m / c / E] HS
Nourmohammadi et al. [2019] [ tsto, Task Demandsto | prob, u | m, Part-feeding] M, HS, ChC
Özcan [2010] [ tsto | prob2, pwork2 | m2] M, SA, ChC
Pereira and Álvarez-Miranda [2018] [ tint | Γ tasks | m] BB, DW, HS
Pereira [2018] [ tint, tworker | | cWC ] M, HS, BB
Raouf and Tsui [1982] [ tsto, �x, exc | prob | m / SSLstat] HS
Reeve and Thomas [1973] [ tsto | | SSLline] HI, BB
Rossi et al. [2016] [ tint | | Stability radio] M
Saif, Guan, Liu, Zhang and Wang [2014] [ tsto | | c;

∑
prob; SSLline] OMH

Saif, Guan, Wang and Mirza [2014] [ tsto | | cWC ; SSLline] M
Saif et al. [2017] [ tsto | | c;

∑
prob +

∏
prob] OMH

Sarin and Erel [1990] [ tsto | | Coinc] DP, HS
Sarin et al. [1999] [ tsto | | Coinc] HS, HI
Shin [1990] [ tsto | | Coinc] HS
Shin and Min [1991] [ tsto | | Com;

∑
prob] HS

Shtub [1984] [ tsto | pstat | Coinc] M, HS
Silverman and Carter [1986] [ tsto | | Costop] HS
Sniedovich [1981] [ tsto | prob | m] DP
Sotskov et al. [2006] [ tint | | m] StA
Sphicas and Silverman [1976] [ tsto | prob | m] M
Suresh and Sahu [1994] [ tsto | | SSLline /

∏
prob] SA

Suresh et al. [1996] [ tsto | | SSLline /
∏

prob] GA
Tang et al. [2017] [ tsto, link, exc, mWo2 | pwork2, prob2 | m2] OMH
Tsujimura et al. [1995] [ tFuzzy | | SSLline] M, GA
Urban and Chiang [2006] [ tsto | probu, u | m] M, ChC

Zacharia and Nearchou [2012] [ tfuzzy | | Scorem,SSL
line

f ] GA
Zacharia and Nearchou [2013] [ tfuzzy | | Ef ] GA
Zhang et al. [2014] [ tsto | | CT; Cost(?)] OMH
Zhang et al. [2017] [ tsto | | CT; Cost(?)] OMH
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3.4.2 Uncertainties in the bu�er allocation

The Bu�er Allocation Problem (BAP) is considered a stochastic problem for all the refer-
ences of the surveys presented in Section 3.2.6. Weiss et al. [2019] present a very extensive,
detailed, and up-to-date review on the BAP and its variations. As previously described
in Section 3.2.6, the bu�er allocation problem usually assumes a production system to be
given, while the bu�er allocation is the only decision variable. A handful of references
extends this scope and includes some element in the production system as a variable
problem. Weiss et al. [2019] do not include these articles in the classi�cation, but cite
some of them in their discussion section. These and related references are discussed in
the following paragraphs.

Spinellis et al. [2000] integrate the bu�er allocation problem with the server allocation
and the workload allocation problem. In the server allocation problem, the number of
machines (or servers) in each step of the production line can be optimized. This results
in parallel machines. Furthermore, Spinellis et al. [2000] consider that the workload can
be allocated freely between the stations. That is, the expected processing time for the
whole process is constant, but the amount of work in each station can be selected by the
planner. With this degree of freedom, Spinellis et al. [2000] arrive at optimal solutions
that contain unbalanced processing times.

An optimization software architecture is proposed by Spinellis and Papadopoulos
[2001]. Their problem de�nition is similar to the one of Spinellis et al. [2000], although
the software tool should employ a wide range of algorithms for the solution of instances.

Hillier and Hillier [2006] also consider that the total processing times of workpieces
can be continuously distributed among the workstations. They perform a simultaneous
optimization of the work and bu�er allocation for the production with stochastic process-
ing times. The processing-time mean at each station and the bu�er sizes are the problem
variables. The objective of their modeling is the maximization of the revenue minus the
associated cost of the required bu�er space.

Hillier [2013] extends the work of Hillier and Hillier [2006] by considering the work-
in-process cost. The objective function is changed to the revenue minus the inventory
costs. This objective function takes into account the bu�er utilization and minimizes the
monetary cost of the work-in-process contained in the bu�ers.

The combined bu�er allocation and equipment selection is explored in Nourelfath
et al. [2005]. In this work, several machines are at the disposal of the line planner. They
perform the tasks at the same deterministic rate, but present di�erent costs, failure rates,
and time-to-repair rates. In Nourelfath et al. [2005], serial lines are considered in the
problem de�nition. Nahas et al. [2009] extend the approach and consider serial or parallel
machines, while a follow-up work [Nahas et al., 2014] investigates more complex networks.

Table 3.8 contains the summary of the surveyed references. The scope of the prob-
lem, its objective function, reliability, random distributions, and solution methods are
described. Some abbreviations are used for the table, such as THR for throughput maxi-
mization, BUF for bu�er cost, and WIP for work-in-progress cost. The processing times
are either deterministic (DET ) or follow the exponential (EXP ) the Erlang (ERL) dis-
tribution. The evaluation methods are either based on decompositions (DEC) or exact
approaches using a Markov Chain (MC). Finally, the generation methods are either enu-
merations (ENU), heuristics (HEUR), or metaheuristics (Simulated annealing - SA, ant
colony optimization - ACO, or genetic algorithm - GA).

Table 3.8 contains only the references with bu�er allocation problems integrated with
other problems. For the BAP works without the integration see the extensive review
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Table 3.8: Literature overview for the bu�er allocation problem with variable production pro-
cessing times. OF stands for Objective Function; PTD stands for Processing Time
Distribution; FRR stands for Failure and Repair Rate distribution; Eval. and Gen.
stand for the evaluation and generation methods, respectively; and Size is measured
in the number of stations.

Author(s) (Year) Problem Layout OF PTD FRR Eval. Gen. Size

Spinellis et al. [2000] Workload allocation Parallel THR EXP - DEC SA 60
Server allocation

Nourelfath et al. [2005] Equipment selection Serial THR DET EXP DEC ACO 10

Hillier and Hillier [2006] Workload allocation Serial THR - BUF EXP / - MC ENU 5
ERL

Nahas et al. [2009] Equipment selection Parallel THR DET EXP DEC SA / 20
ACO

Hillier [2013] Workload allocation Serial THR - WIP EXP / - MC ENU / 4
ERL HEUR 7

Nahas et al. [2014] Equipment selection Network THR DET EXP DEC GA 15

of Weiss et al. [2019]. All the displayed references and the majority of the works cited
by Weiss et al. [2019] contain exponential, or Erlang distributed processing times. This
assumption is not usually encountered in assembly lines of the automotive industry. Fur-
thermore, the size of bu�ers for products of the size of vehicles limits their use in real
assembly lines.

3.5 Uncertainty in multiple-model production systems

The processing times in stations of an assembly line producing multiple models depend on
more factors than the case of the single-model variant. Besides the possible uncertainty
of the processing times of each model, the characteristics of the product itself may be
uncertain. This uncertainty is due to the multiple products which may be assembled
within the same line. More speci�cally, the production demand or the production sequence
can be modeled as random variables and may account for the uncertainty in multiple-
model production systems.

In this section, the literature is divided into three subsets, depending on the source of
uncertainty. The �rst group is similar to the single-model case and considers uncertain
processing times (tsto, tint, or tfuzzy). The second group contains the literature on assembly
lines with a given and deterministic demand, which is produced in a random order (rnd
seq). That is, the production sequence is randomly determined based on random draws
of the products' relative demands. The third group contains the literature on demand
uncertainty. For this case, the relative demands themselves are considered to be random
variables (demsce). The summary of all articles is given in Table 3.9 on page 44.

A second classi�cation is related to how the multiple models are handled in the solu-
tion procedure. Five approaches are identi�ed and are included in the last column of the
literature review of Table 3.9. The simplest treatment is to reduce the multiple models
to an equivalent average single model (mix − single). A second common approach cor-
responds to the each classi�cation of Table 3.3, for which all restrictions are applied to
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all models individually. However, restricting all models equally may be too restrictive as
the whole line can then be sized for the most loaded model. The third approach (div)
also treats each model individually but uses di�erent levels of restriction for each model.
The fourth and �fth formulations deal with the interaction of the di�erent models in their
production sequence. The acronym seq is used for the procedures which integrate the
optimization problem of sequencing the production along with the balancing of the as-
sembly line. Another form to integrate explicitly the production order without solving for
the best sequencing is to consider a random sequence (rnd− seq). The random sequence
simulates a Just-in-Sequence production [Bukchin et al., 2002], in which the products
are assembled in the sequence they are ordered by the end customer. These orders are
modeled as a random sequence based on the relative demand of the products.

3.5.1 Uncertainty in the processing time

Among the literature on multiple models with uncertain processing times, most of the
papers deal with the models either separately or aggregate them into an average model
(mix− single). Vrat and Virani [1976] reduce a mixed-model assembly line into a single
model line with stochastic processing times. The studies by McMullen and Frazier [1997];
McMullen et al. [1998]; McMullen and Tarasewich [2003, 2006] consider several objectives.
For some of them, the average model is used.

The application of the restrictions to all models individually is present in Hop [2006],
who model a mixed-model assembly line with fuzzy processing times. The div category is
represented by Chakravarty and Shtub [1986] and Al-E-Hashem et al. [2009]. Chakravarty
and Shtub [1986] integrate the balancing problem with the lot-sizing of multi models so
that the production and the cycle times of each model are taken into account indepen-
dently. Al-E-Hashem et al. [2009] model the robust assembly-line balancing of a mixed-
model assembly line, in which each model has its own cycle time.

The combined balancing and sequencing problem of mixed-model assembly lines under
uncertainty is represented by Özcan et al. [2011], Dong et al. [2014], and Tiacci and Mimmi
[2018], classi�ed within the seq criterion. Özcan et al. [2011] deal with the balancing and
sequencing of U-shaped mixed-model assembly lines. As stations of U-shaped lines may
produce di�erent models on each of the sides of the station, the processing time of the
station depends on the sequence of products. Therefore, Özcan et al. [2011] perform a
vertical balancing considering the sequence of the products. Dong et al. [2014] solve the
combined balancing and sequencing problem minimizing the expected utility work for
paced lines. For unpaced lines, Tiacci and Mimmi [2018] propose a genetic algorithm that
solves the balancing and sequencing problem simultaneously.

3.5.2 Uncertainty of the production sequence

The production of a random production order is called by Bukchin et al. [2002] a Just-
in-Sequence production, in which the end customer orders are produced in the sequence
they are received. In the �rst work on this setting (rnd − seq), Bukchin et al. [2002]
propose a heuristic procedure that maximizes an approximation of the throughput. The
objective function is based on the bottleneck measure that estimates the cycle time of
unpaced assembly lines under random sequences. Manavizadeh et al. [2012] extend the
work of Bukchin et al. [2002] with respect to multiple objective functions.

Another approach to model random sequences (rnd−seq) relies on simulation. Tiacci
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[2015a] and Tiacci [2015b] propose two genetic algorithms for the throughput maximiza-
tion of unpaced assembly lines under random sequences and stochastic processing times.
Tiacci [2015b] also integrates the bu�er allocation into the problem.

3.5.3 Uncertainty of demand

The third source of uncertainty lays in the demand for multiple products. These uncer-
tainties are not explored very much in the literature, although they are often observed
in practice [Chica et al., 2016]. The planning of a new assembly line is performed much
earlier than the production phase. Between the planning and the realization, a planner
must rely on demand estimates. Furthermore, the demand may change throughout the
lifetime of an assembly line. Not only do the weekly or monthly sales vary, but also new
models are developed while others are taken out of the market.

All of the references on demand uncertainty model demand as given in a �nite number
of possible scenarios. Simaria et al. [2009] model a multi-model assembly line, in which
only one model can be produced at a given time. In their problem, the demand for
each product is given in terms of speci�c cycle times. For the di�erent scenarios, the
number of workers can be adjusted to the demand. That is, the assignments of the tasks
are �xed, but the workers can be reassigned to properly match the demand scenarios.
Another example of di�erent demand level scenarios is given by Li and Gao [2014]. In
their approach, overtime is used to compensate for the most loaded demand scenarios. Li
and Gao [2014] model a mixed-model assembly line as its average single model equivalent
and minimize the total cost comprising of normal and overtime wages.

Other authors explore the demand uncertainty in the context of robust optimization:
Chica et al. [2016] and Chica et al. [2019], for example, consider the robust assembly-line
balancing problem with space limitations. In their problem, tasks need space for equip-
ment and for the inventory of the parts that are mounted into the product. Therefore,
not only the processing time must be accounted for, but also the needed space of each
task. They deal with the multi-objective optimization of such lines, in which the robust-
ness in terms of the number of stations, cycle time, and the area is accounted for. To
model the multiple models, the average of the processing time and area requirement is
used for each demand scenario. For the multiple objective functions proposed, either the
number of non-achieved requirements or the maximal amount of time and/or space over
the capacity is minimized. A di�erent approach is due to almost identical papers by Xu
and Xiao [2009] and Xu and Xiao [2011]. They consider mixed-model assembly lines with
stochastic processing times and demand based on scenarios. The objective function is the
minimization of the variance between the stations' workloads (vertical balancing). They
consider the worst case and the α worst case (α percentile) of the variation for all possible
scenarios. However, it remains to be clari�ed how the multiple models are dealt with
besides the calculation of the processing-time variance. No feasibility condition based on
the individual models or the average model is discussed, so that the column `Models' from
Table 3.9 is left blank for these two papers.

Some minor terms are left out of the classi�cation here because they only apply to
one paper and are only partly related to the balancing problem. The cost of inventory
storage (stor) in Chakravarty and Shtub [1986], set-up costs (set−up) in Chakravarty and
Shtub [1986], and ergonomic factors (erg) in Tiacci and Mimmi [2018] are some examples.
Furthermore, robust is used as a robustness expression for the objective function as in
Chica et al. [2016, 2019].
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Table 3.9: Literature overview for the stochastic balancing of multiple-model assembly lines.

Author Characteristics Contribution Models
Al-E-Hashem et al. [2009] [mix, tint | div, equip, Γtask | Com,Eq ] M div
Bukchin et al. [2002] [mix | unpac | c] HS, HI rnd seq
Chakravarty and Shtub [1986] [mult, tsto | div, ∆tunp, bu�er | Com,stor,set−up] HS div
Chica et al. [2016] [mix, cum, demsce | each | m, c, area, robust] EA mix-single
Chica et al. [2019] [mix, cum, demsce | each | m, c, area, robust] EA + Sim mix-single
Dong et al. [2014] [mix, tsto | u | E(UW)] SA seq
Hop [2006] [mix, tfuzzy | each | m] M, HS, HI each
Li and Gao [2014] [mix, demsce | | Com,c] HS, BBR mix-single
Manavizadeh et al. [2012] [mix | | m, c, SSLline, SSLstat] EA rnd seq

McMullen and Frazier [1997] [mix, tsto | pstat | Scorem;pstat,SSLline,
∏
prob] HS mix-single

McMullen et al. [1998] [mix, tsto | pstat | Scorem;pstat,SSLline,
∏
prob] SA mix-single

McMullen and Tarasewich [2003] [mix, tsto | pstat | Scorem;pstat,SSLline,
∏
prob] ANT mix-single

McMullen and Tarasewich [2006] [mix, tsto | pstat | Co(m;pstat), SSLline,
∏

prob] ANT mix-single
Özcan et al. [2011] [mix, tsto | prob, u | SSLline] GA seq
Simaria et al. [2009] [mult, exc, link, demsce | u, div | ScoreE,idle] ACO div
Tiacci [2015a] [mix, tsto | pstat, equip, unpaced | Com,pstat,equip] GA + Sim rnd seq

Tiacci [2015b]
[ mix, tsto | pstat, equip, bu�er, unpaced |

GA + Sim rnd seq
Com,pstat,equip,buffer]

Tiacci and Mimmi [2018]
[ mix, tsto, erg |

GA + Sim seq
pstat, unpaced, res01 | Scorem,pstat,equip,erg ]

Vrat and Virani [1976] [mix, tsto | pstat | Coinc] HS mix-single
Xu and Xiao [2009] [mix, tsto, demsce | prob | SSLlineαWC ] GA
Xu and Xiao [2011] [mix, tsto, demsce | prob | SSLlineαWC ] GA

3.6 Uncertainties of the disassembly process

The balancing of disassembly lines is �rst discussed by Gungor and Gupta [2001], who
explain in detail the di�erences between the assembly and disassembly processes. The
disassembly process may be much more variable since there exists a variety of possible
inputs and outputs. The products to be dismantled, for instance, may comprise of dif-
ferent models of products, may greatly vary in quality, or even be damaged or broken.
The output of the line also depends on the product and the environmental and economic
restrictions. Some parts or sub-assemblies may be reused, while other parts of the product
need to be discarded. Another signi�cant di�erence is the precedence relations between
tasks. The precedence graph of the disassembly process is not simply the inverse produc-
tion order. There are, for instance, `OR' precedence relations [Gungor and Gupta, 2001] if
an internal part can be removed from two or more sides of the product. Removing either
one of the blocking parts would allow the task to be performed.

The disassembly-line balancing is a very active research �eld and has received multiple
literature reviews. A broad survey on disassembly-line balancing is provided recently
by Özceylan et al. [2019]. As the survey is published in 2019, this section uses the
classi�cation and the review of the survey to discuss the particularities of uncertainty in
disassembly lines.

Özceylan et al. [2019] identify 116 references from 1999 to 2018 dealing with the
balancing of disassembly lines, from which 33 studies present some sort of uncertainty.
Out of these 33 references, 27 of them present stochastic or fuzzy processing times as
their only uncertainty. As the uncertainty of processing times is thoroughly discussed for
the balancing problem in Subsection 3.4.1, only the di�erent sources of uncertainty are
discussed in this section.

Gungor and Gupta [2001] consider a probability of tasks with defects. Failure results in
not being able to perform tasks and their successors, a�ecting the processing times in the
next stations. The proposed solution method contains a network algorithm that models
assignments as nodes and arcs as the costs in the objective function. The procedure
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initiates without the stochastic e�ects, which are calculated for the shortest path in each
iteration. The e�ects on each branch are calculated based on independent probabilities
for each task.

Turowski et al. [2005] consider heterogeneous workers who can also randomly damage
the pieces in their operations. They propose a heuristic that maximizes the disassembly-
line pro�t based on the idle-time minimization and the damage levels of pieces.

Altekin and Akkan [2012] also model the possibility of task failures. The authors
consider the possibility of rebalancing the line after a defect. That is, the tasks can be
rearranged in the remaining stations after a failure. Their objective is to maximize the
pro�t of incomplete disassembly. The assignment of tasks de�nes which pieces will be
removed and which are left in the used product to discard. If the tasks can be reordered
after a failure, the disassembly can be changed to remove the components that are not
a�ected by the failure. The authors consider the probability of each failure and the
optimized rebalancing for each case. In their formulation, it is assumed that only one
task can fail for each product.

Paksoy et al. [2013] consider the uncertainty related to objective functions. They
propose a fuzzy goal programming and a fuzzy multi-objective programming model for
the minimization of the cycle time, number of stations, and soothing. The uncertainty
lays in the importance of the objective function terms, which may change during the
lifetime of the disassembly line.

Özceylan and Paksoy [2014] integrate disassembly with a Closed-Loop Supply Chain.
That is, not only the disassembly line is modeled, but also the production, distribution,
and collection of the used products are treated. The costs, demand, and return rates of
used products are modeled as fuzzy parameters in a fuzzy integer programming model.

Tuncel et al. [2014] use reinforcement learning to solve a disassembly-line balancing.
They model a deterministic and a stochastic environment, in which the demand is un-
certain. The demand only a�ects one of three objective functions, which minimize the
time to retrieve the demanded pieces. It remains unclear why it is important that a piece
is to be removed on an earlier station since the cycle time is generally small. In the
steady-state, the amount of removed demanded pieces will be equal independent of the
station in which they are removed. Therefore, it is questionable whether the approach is
realistic. Furthermore, the demand does not alter the number of dismounted products,
the cycle time, or the number of stations. The di�erent demand levels a�ect only the
objective function coe�cients.

3.7 Gaps and contributions to the literature

The objective of this chapter is to give a broad overview of uncertainties considered in
the balancing of assembly lines and related problems. Based on the cited papers and
the surveys on this topic, it can be observed that the literature on stochastic and fuzzy
problems is plenty. The approaches dealing with uncertainties are mostly focused on
single-model production, while the most common uncertainty lays in the processing times.
Therefore, contributions in the less explored directions are pointed out as the focus of this
manuscript.

In Chapters 4 to 6, three contributions to the literature on mixed-model assembly
lines are introduced. The source of uncertainty of the contributions lays in an unknown
demand in Chapter 4 and unknown production sequences in Chapters 5 and 6.
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In the �rst contribution (Chapter 4, also described in Sikora [2021]), the demand is
modeled as a collection of possible scenarios, as it is employed by the other papers on
demand uncertainty. Di�erent from the approaches which deal with the average model
or with the models individually (such as the robust optimization), the chosen approach is
to consider the sequence of the products explicitly. The selected assembly-line layout is a
straight and paced line, in which utility work can be used to assure every product is �n-
ished within the station bounds. Each demand scenario consists of the relative demand of
the ordered products, so that every scenario may require a di�erent production sequence.
The assignment of tasks and equipment to the stations after the balancing is not �exible
and must be the same for all demand scenarios. As the balancing and sequencing have
two di�erent time frames, the problem is modeled as a two-stage stochastic optimization
problem. The balancing is determined in the �rst stage with only the knowledge of the
demand-scenario distribution. The sequencing can be optimized after the orders (and
consequently the demand) are known so that each scenario is modeled individually on the
second stage. The objective of the formulation is to �nd the balancing solution with the
fewest expected utility work for a given cycle time and number of stations.

The contribution described in Chapter 5 assumes that the decision-maker does not
in�uence the production sequence. As reviewed in Section 3.5.2, the uncertainty of the
production sequence is mostly modeled with a random sequencing simulating the cus-
tomers' orders. The proposed contribution optimizes the balancing of a paced assembly
line under the assumption that the products are randomly selected with a �xed relative
product probability. The objective is to minimize the expected utility work to operate
the assembly line, which is calculated exactly using results from Markov chains [Gwig-
gner, 2020]. In the literature, a similar problem is explored by Bukchin et al. [2002]. The
reference, however, deals with unpaced lines and proposes a heuristic procedure.

The third contribution (Chapter 6) is a middle ground between the total sequence
control of Chapter 4 and the random sequence of Chapter 5. The production sequence is
considered to enter the assembly line in a random order but may be resequenced using
a bu�er. This contribution focuses on the optimization of bu�er use. The production is
considered to be a given straight and paced assembly line, in which the products �ow in the
order they are inserted. The optimization problem consists of choosing the product order
so that the due dates are obeyed and the utility work in the assembly line is minimized.
The problem is solved at every cycle time since a product must be selected to advance
into the line. As the next product that enters the bu�er is unknown, the optimization
occurs under uncertainty in an online optimization problem.

The three contributions aid in �lling out the gap of the design of assembly lines under
uncertainty of what is produced. Both the demand levels as well as the production order
are tackled, considering both the possibility and impossibility of production sequencing.
Furthermore, an application-oriented sequencing procedure is explored, in which a policy
for the bu�er usage is obtained.



Chapter 4

Balancing under full sequencing control

In this chapter, a solution method for the assembly-line balancing under demand uncer-
tainty is proposed. The project is included in Sikora [2021], which is published in the
European Journal of Operational Research. This chapter has two purposes: the �rst one
is to describe the development of the solution algorithm and the tests that are included
in Sikora [2021]; the second purpose is to provide complementary content that is not in-
cluded in the paper, such as some preliminary tests and results on further developments.
The chapter is divided into three sections, in which the problem de�nition, the solution
algorithm, and the results are described.

4.1 Problem de�nition

In this section, the modeled production system is described, as well as its parameters, un-
certainties, and the order in which the decisions are made. After the problem description,
a mixed-integer programming formulation is presented.

The considered production system consists of a paced assembly line. A conveyor belt
is responsible for the transport of workpieces along a series of stations. The stations
are ordered in a straight line and the conveyor speed is constant and is matched to the
required cycle time. The workstations have �xed boundaries which do not overlap with
the ones from other stations. The length of each station is constant for all stations. The
stations can be longer than the cycle time equivalent space so that variations of processing
times of the products can be compensated within a station. Furthermore, utility work
is used as production support, if at any time a product can not be �nished within the
station boundaries. The objective of the problem is to balance the assembly line while
minimizing the expected amount of necessary utility work.

The e�ciency of a mixed-model assembly line and the required utility work depends
on the production sequence. In the literature, one form of dealing with the sequencing
of assembly lines is based on a minimal part set (MPS) e.g., Bard [1989]. Such an MPS
consists of a minimal representation of the relative demand for product models. For
instance, the production of 300 Model A, 200 Model B, and 100 Model C products would
result in an MPS of relative demands (3,2,1). Scheduling the MPS is known as an e�cient
form to solve the sequencing problem instead of dealing with the complete sequence [Lopes
et al., 2020b]. In the example, 6 models should have to be sequenced in the MPS instead
of the 600 products in the complete sequence. The MPS approach usually implies that
the production would repeat the minimal sequence to achieve the total demand levels
[McCormick et al., 1989].

47
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Figure 4.1 illustrates the e�ect of the processing times of di�erent models and their
sequence. In this �gure, an MPS comprising of four products is represented with P1 to
P4 as horizontal bars. The station is de�ned as the space between the left and the right
vertical lines, while the dashed vertical line represents the cycle-time equivalent distance.
For a given conveyor speed, a piece entering the workstation at position 0 would be in
position CT after a cycle time. For convenience, the conveyor speed is set to 1 length unit
per time unit, so that the conveyor-belt displacement after a cycle time is also CT length
units. The length of the station is also de�ned based on the cycle time using a length
multiplier (LM). The multiple products are displayed in the same diagram, in which the
y-axis represents time. Each bar stands for the processing time of a product, de�ning the
start and end position of the processing. For piece P1, for instance, the worker starts the
processing at the left border and �nishes his operations some time after the cycle time.
At the end of the processing of product P1, the worker moves to the next piece and starts
immediately. As product P1 required more than the cycle time, the second product enters
the line before P1 is �nished. This way, the start position of P2 is larger than zero. If
the worker �nishes a product before the cycle time, idle time occurs, because the next
product has not yet reached the station's entry point. After a sequence of products with
long processing times (P3 and P4), the �nal position of the worker would be outside the
station borders. This is avoided by using utility workers that can be called to help with
the production and avoid the station limit violations. This sequence requires utility work
to avoid the violation caused by P4.

As the MPS is quite small in relation to the full sequence, the sequencing is performed
cyclically. The given MPS is repeated until the global-production demand is achieved. In
order to allow a steady and cyclical production, the start and end positions of each product
must be the same in each cycle. In the example of �gure 4.1, it would be impossible to
repeat the MPS P1− P4 starting at position 0 in the second cycle at the same position,
since P1 of the second cycle has entered the station before P4 is �nished. This delay
between two MPS can also be corrected using utility work. If a utility worker starts the
processing of P1 at position 0, the regular worker can resume P1 after P4 and repeat the
exact same cycle as the �rst MPS. This way, a cyclic scheduling is obtained.

The uncertainty of the system is derived from the product demand. This uncertainty
can be interpreted as a project uncertainty, in which the assembly line has to be planed
before the real demand is known. A second interpretation is the possible demand �uctua-
tions through the lifespan of the assembly line. For this approach, the demand is de�ned
as a collection of possible scenarios, which contains the relative demand of each product.
The demand distribution is de�ned by a collection of MPSs and their corresponding prob-
abilities. The minimization of the expected utility work is based on the average values of
the given demand-scenario realizations.

The optimization problem in question is the design of an assembly line that operates
well under uncertainty. Tasks must be assigned to workstations, setting the processing
time of each produced model in each station. As multiple models exist, the operation
must consider the sequence of pieces, so that both problems are interrelated. The times-
pan of each decision, however, greatly di�ers. The assignment of tasks to workstations is
a planning problem that is generally performed before the building of the assembly line.
As the assignments require the acquisition and installment of equipment and machin-
ery, the balancing is considered a middle to long- term decision and cannot be adjusted
easily [Boysen et al., 2009b]. The sequencing of products, on the other hand, has fewer
restrictions and is considered as an operative decision [Boysen et al., 2009c].
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Figure 4.1: Example of the scheduling in a station of a paced assembly line. Figure from Sikora
[2021].

The de�ned problem combines the balancing and sequencing problem in a stochastic
framework. As the balancing must be performed before the real knowledge of the demand,
the decision must be taken a priori. The sequencing of the products can be speci�ed after
the products are ordered so that they can be solved with full information. This structure
is common in stochastic two-stage problems [Birge and Louveaux, 2011], in which the �rst
stage must be de�ned with uncertainty and the second stage is solved after the realization
is known.

The described problem is formulated as mixed-integer linear programming. The bal-
ancing decisions are part of the �rst stage and the sequencing is the second stage of a
stochastic two-stage model. The model is given and described as in Sikora [2021]. This
model is called �monolithic model�, as all decisions (both �rst and second stage) are
modeled in the same formulation. Birge and Louveaux [2011] call such formulation a
�deterministic equivalent� model since all scenarios are explicitly represented. In the fol-
lowing section, a decomposition strategy is proposed to explore the compound structure
of the problem.

The sets and the required data are de�ned in Table 4.1, while the variables are sum-
marized in Table 4.2. A set T of tasks t is distributed over stations (set S) respecting
precedence relations (Prec). The sequencing deals with a collection of product modelsM .
Each model m exhibits task processing times Durtm. The duration of a task of a given
model can be set to zero if the product does not require such task. For the stochastic
version of the problem, multiple demand scenarios d ∈ D are considered with a proba-
bility of Prd. For each given demand scenario, the demand for each model (Demmd) is
given. Based on each scenario d, a set of product pieces p ∈ {1, ..., |MPSd|} is de�ned.
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The product set is de�ned with an index d because the number of pieces in a minimal
part set (MPS) can di�er based on the demand of each scenario. The cycle time (CT )
is given and the station length is measured in relation to the equivalent distance of cycle
time considering a conveyor speed of 1 and a constant length multiplier LM (LM · CT ),
identical to all stations.

The �rst-stage decisions are based on the balancing variables x. The second stage
depends on binary sequencing variables y and continuous variables U , PT , and Pos to
model the utility work, processing time, and �nal work position for every workpiece and
station for all demand scenarios.

Table 4.1: Nomenclature of sets and data of the formulation.

Sets Meaning

T Set of tasks t

S Set of stations s or k ordered along the belt

M Set of product models m

D Set of demand scenarios d

{1, ..., |MPSd|} Set of pieces p of the demand scenario d

Prec Set of precedence relations (t1, t2), t1, t2 ∈ T

Data Meaning

Durtm Duration time of task t of model m

Demmd Demand of model m in scenario d

Prd Probability of scenario d

CT Cycle time

LM Length multiplier, used to de�ne the maximal length of the stations

Table 4.2: Nomenclature of model variables. P stands for the set de�ned in {1, ..., |MPSd|}
.

Variable Domain Type Meaning

x (T, S) Binary 1, if task t is assigned to station s, 0, otherwise

y (P,M,D) Binary 1, if the pth piece is of model m for scenario d, 0, otherwise

U (P, S,D) R+ Utility work of piece p at station s and scenario d

PT (P, S,D) R+ Sum of the processing times of piece p at station s and scenario d

Pos (P, S,D) R+ Final position of the worker for piece p at station s and scenario d

Minimize
∑
d∈D

∑
s∈S

∑
p∈{1,...,|MPSd|}

Prd · Upsd
|MPSd|

(4.1)

∑
s∈S

xts = 1 ∀ t ∈ T (4.2)

∑
k∈S:k≤s

xt1k ≥
∑

k∈S:k≤s

xt2k ∀ (t1, t2) ∈ Prec, s ∈ S (4.3)
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∑
t∈T

xts ·Durtm ≤ LM · CT ∀ s ∈ S,m ∈M (4.4)

∑
m∈M

ypmd = 1 ∀ d ∈ D, p ∈ {1, ..., |MPSd|} (4.5)

∑
p∈{1,...,|MPSd|}

ypmd = Demmd ∀ m ∈M,d ∈ D (4.6)

PTpsd ≥
∑
t∈T

xts·Durtm−LM ·CT ·(1−ypmd) ∀ d ∈ D,m ∈M, s ∈ S, p ∈ {1, ..., |MPSd|}

(4.7)∑
p∈{1,...,|MPSd|}

PTpsd =
∑
t∈T

∑
m∈M

xts ·Durtm ·Demmd ∀ d ∈ D, s ∈ S (4.8)

Pospsd ≥ Pos(p−1)sd − CT + PTpsd − Upsd ∀ d ∈ D, s ∈ S, p ∈ {2, ..., |MPSd|} (4.9)

Pos1sd ≥ Pos|MPSd|sd − CT + PT1sd − U1sd ∀ d ∈ D, s ∈ S (4.10)

Pospsd ≥ CT ∀ d ∈ D, s ∈ S, p ∈ {1, ..., |MPSd|} (4.11)

Pospsd ≤ LM · CT ∀ d ∈ D, s ∈ S, p ∈ {1, ..., |MPSd|} (4.12)

xts, ypmd ∈ {0, 1} (4.13)

Upsd, PTpsd, Pospsd ∈ R+ (4.14)

The monolithic model is presented by the expressions (4.1)-(4.14). Its objective func-
tion is the minimization of the expected utility work per unit produced. Expression (4.1)
is modeled as a weighted average of the utility work on all scenarios divided by the number
of products in each scenario. Expressions (4.2) and (4.3) are the occurrence and prece-
dence restrictions. The balancing part of the model is completed with ineq. (4.4). So that
the products can be processed within the stations, the workload of any station cannot be
longer than the station length (LM · CT ).

The sequencing part of the model assigns product models to workpieces. The assign-
ment restrictions are modeled by equations. (4.5) and (4.6). Every workpiece must be
one of the product models (equation 4.5), while the number of pieces of a given model
must be equal to the demand for a given scenario (equation 4.6). The processing time
variables (PT ) integrate the balancing and sequencing. Expression (4.7) is a Big-M con-
straint assigning the processing time of workpieces to the corresponding duration of their
model tasks. The sum of the processing time is also enforced by expression (4.8), which
tightens the linear relaxation of the model.

Expressions (4.9)-(4.12) model the scheduling of paced assembly lines. Variable Pos
controls the �nal position of a worker after working on a piece. This position is determined
by expression (4.9) based on the position of the last piece (Pos(p−1)sd), the time distance
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between the two pieces (CT ), the processing time of the piece (PTpsd), and the employed
utility work (Upsd). Expression (4.10) represents the cyclical sequencing link of the �rst
and the last piece of the previous of two di�erent replications of the MPS. Further bounds
complete the formulation of the problem to assure no task is performed outside of the
station borders. Expression (4.11) assures that the initial position of a piece (Pospsd−CT )
cannot be negative, as the worker can return the equivalent of CT at the line. For the
maximal bound, the �nal work position must be within the station limit (expression 4.12).
Finally, expressions (4.13) and (4.14) present the binary restrictions on variables x and y
and the non-negativity of the continuous variables.

Notice that the balancing restrictions are independent of the demand scenario (no
index d), while the sequencing part of the model has variables and expressions to every
scenario. This structure is commonly found in stochastic problems and it is explored in
the decomposition approach presented in Section 4.2.

4.2 Solution algorithm

The proposed solution algorithm is based on a decomposition procedure that uses the
structure of the problem to solve it e�ciently. The procedure is based on Benders' de-
composition, which is described in Section 4.2.1 and is originally proposed for linear
subproblems [Benders, 1962]. The adaptation of the decomposition algorithm for sub-
problems with integer variables is discussed in Section 4.2.2. The proposed algorithm is
then presented in Section 4.2.3.

4.2.1 Benders' decomposition

Benders' decomposition is named after the work of Benders [1962], in which a linear or a
mixed-integer linear problem is decomposed into two levels. The integer variables are kept
on the �rst level, while linear variables can be assigned to a subproblem on the second
level. The advantage of the decomposition is that the separated problems are smaller and
therefore can probably be solved faster.

Stochastic optimization problems are typical applications of decomposition procedures
since the multiple scenarios have a very similar structure. In the stochastic literature,
Benders' decomposition is often named L-Shape method [Birge and Louveaux, 2011].
In this method, the �rst stage of a stochastic model is the master problem, while the
subproblems are the second stage of the decision process, that is, the reaction to the
uncertain events. Just as Benders' decomposition, the standard L-Shape method also
requires linear variables in the subproblem.

As both, master and subproblem, are solved separately, both do not contain all infor-
mation of the problem. Benders' decomposition is based on the exchange of information
from both levels of the problem. For a given solution of the master problem (decisions
before the outcome of the realizations), the subproblems can be solved to determine the
best outcome in response to the solution. This response quanti�cation can be given back
to the master problem in form of a cutting plane. This way, the master problem with the
added cut acquires information about the subproblems that are already solved. In each
iteration, the master problem is solved with incomplete, but accumulating information,
which is added from the solution of the subproblems. The procedure is iterated until the
solutions of both problems are compatible. The reasoning behind the decomposition is
that not all information of the subproblems needs to be added to the master problem to
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characterize the optimal solution. That is, not all feasible solutions of the master prob-
lem have to be explored by evaluating the corresponding subproblems. The expectation
for good applications of Benders' decomposition is that solving signi�cant smaller prob-
lems multiple times requires less e�ort than a large problem combining all variables and
restrictions [Rahmaniani et al., 2017].

A general two-stage stochastic linear program can be written in the form [Laporte and
Louveaux, 1993]

Min Z = cTx+ Eξ Miny(q
T (ω)y)

s.t. Ax = b

Wy = h(ω)− T (ω)x

x ∈ X, y ∈ Y,

(4.15)

in which c ∈ Rn1 , b ∈ Rm1 , and A ∈ Rm1×n1 , respectively, represent the objective function
coe�cients, the right-hand-side, and the technological matrix of the �rst stage problem
with n1 variables and m1 constraints. The second-stage is de�ned based on a random vec-
tor ξ, which contains all stochastic components of the problem: ξ(ω) = (q(ω), h(ω), T (ω)).
The dimension of ξ is de�ned accordingly by the dimensions of q(ω), h(ω), and T (ω), which
are the objective function coe�cient vector, the right-hand-side vector, and the matrix
that represents the e�ect of a �rst stage-solution (x) in the second-stage, respectively.
Along with the technological matrix W , the second stage is de�ned based on the possible
realizations ω of the random variable ξ. Matrix W can also be de�ned as a function of
ω [Birge and Louveaux, 2011], which is not the case for the presented sequencing sub-
problem. Finally, Eξ represents the expected value of the realizations of ξ. Note that this
extensive formulation contains all variables and restrictions of the problem.

For the decomposition, the model can be separated into two parts. The �rst one retains
the �rst-stage x variables, while the second-stage contains all scenarios. A reformulation
of the master problem is presented in expressions (4.16) - (4.20). This reformulation is
named relaxed master problem since the subproblem variables and restrictions are ex-
cluded [Rahmaniani et al., 2017]. This information, however, must be added during the
algorithm's iterations. To aid in the integration, a new variable θ is added to approximate
the value of Eξ Miny(qT (ω)y) in the objective function (eq. 4.16). The information of
the subproblems can be passed on to the master problem in form of feasibility (4.18)
and optimality (4.19) restrictions. The elements Dk, dk, Ek, and ek are the coe�cients
of the kth computed cut of each type in the procedure. The feasibility restrictions are
useful when a solution of the relaxed master problem is shown infeasible in one of the
subproblems. The coe�cients Dk and dk are chosen in a way, that the region of the master
problem containing the infeasible solution is cut out. The optimality cuts (4.19) provide
information from the objective function value of the subproblems. These cuts act on the
variable θ, improving the objective function approximation of the master problem after
each iteration.

Min cTx+ θ (4.16)

s.t. Ax = b (4.17)

Dkx ≥ dk k = 1, ..., s (4.18)

Ekx+ θ ≥ ek k = 1, ..., t (4.19)

x ∈ X, θ ∈ R. (4.20)
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The values of Ek and ek are derived from the shadow prices of the subproblems, while
Dk and dk come from the infeasible rays of subproblem solutions [Birge and Louveaux,
2011]. Therefore, Benders' decomposition (and the L-shape method) is applied to linear
subproblems in its standard form [Rahmaniani et al., 2017].

4.2.2 Combinatorial Benders' decomposition

In the case that the subproblems contain integer variables, a di�erent strategy for the
cuts is needed. According to a recent survey on Benders' decomposition, Rahmaniani
et al. [2017] state that the cuts are still valid when based on the shadow prices of the
subproblem's linear relaxation. These cuts, however, may still leave a gap between the
integer solution and the linear relaxation. One alternative to overcome this gap is to use
the combinatorial nature of the problem to build cuts.

One of the alternatives to build cuts for integer subproblems is proposed by Laporte
and Louveaux [1993] for master problems composed of binary variables. The cut

θ ≥ (θk − L)

∑
i∈Sk

xi −
∑
i/∈Sk

xi − |Sk|

+ θk (4.21)

is used to correct the value of θ based on a solution of an iteration k. Sk is the set of
the master problem variables that have value 1 in the solution of iteration k, θk is the
expected value of objective function after solving the subproblems, and L is a lower bound
for the objective function. Cut (4.21) assures that θ is greater than or equal to the realized
value (θk) when the master problem variables assume the values of the explored solution
in iteration k. This restriction is implemented using the sums

∑
i∈Sk xi and

∑
i/∈Sk xi.

The restriction is only bounding when
∑

i∈Sk xi = |Sk| and no variable xi /∈ Sk is set to
1. If any variable assumes a di�erent value, then θ is only bounded to a lower bound
L. If more variables assume a di�erent value, the cut does not restrict e�ectively (under
the lower bound) the objective function of the solution. Laporte and Louveaux [1993]
also develop a strengthened version of the cut using improved lower bounds based on the
solution neighborhood.

A second alternative for combinatorial Benders cuts for binary master problems is
proposed by Codato and Fischetti [2006]. Their approach uses the subproblems as a
feasibility check. The approach is only applicable if the objective function of the problem
is either only based on the master problem variables or only based on the subproblem
variables. When the objective function is only based on master problem variables, the
subproblems can be used to check whether a master problem solution is feasible for the
whole model. If the solution is proven infeasible, the cut∑

i∈C

xi ≤ |C| − 1 (4.22)

is added to the master problem. The set C ⊆ X is a minimal infeasible subsystem (MIS)
[Codato and Fischetti, 2006]. This set contains the smallest set of variables that causes the
infeasibility. According to Codato and Fischetti [2006], the identi�cation of the minimal
infeasible subsystem may be cumbersome, so that non-minimal infeasible systems may
also be used. Cut (4.22) ensures that at least one of the variables contained in C must
be zero.
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Cut (4.22) also works for the case in which the objective function is only based on
the subproblem variables. In this case, an upper bound for minimization problems or
a lower bound for maximization problems is needed. The subproblem is solved with
an extra restriction, that the objective function must be strictly better than the upper
bound. Hence, the master problem searches for improvements, which are veri�ed on the
subproblem level. If the solution cannot beat the bound, a cut (4.22) can be included in
the master problem. This process is iterated until the master problem becomes infeasible.
The latest bound cannot be improved and is optimal. Codato and Fischetti [2006] state
that the use of the approach is very sensitive to the structure of the problem and may
not be e�cient for some applications.

There are some approaches in the assembly-line balancing literature which use the
combinatorial version of the Benders' decomposition. Akpinar et al. [2017] solve the
assembly-line balancing problem with task-dependent set-up times. In their problem, the
tasks must be not only assigned to workstations but also scheduled within the workstation.
Akpinar et al. [2017] propose a Benders' decomposition in which the master problem
consists of the balancing problem and the intra-station sequencing is the subproblem.
The used combinatorial cuts are based on Codato and Fischetti [2006]. If the scheduling
of any station is infeasible in terms of the cycle time, the assignment of this station is
cut out using cut (4.22). In this problem, the sequencing of each station can be solved
independently. The MIS consists of the assignments to the infeasible station.

The second application of combinatorial Benders' decomposition in the assembly line
balancing context is due to Michels et al. [2019]. In this contribution, assembly lines with
multiple workers per station are optimized. Just as in Akpinar et al. [2017], multiple
workers require the intra-station scheduling of operations. The approach also divides the
problem into balancing as the �rst level and sequencing of each individual station as the
second level. The proposed combinatorial cut in Michels et al. [2019] is a special version
of cut (4.22). One infeasible subproblem does not necessarily mean that the assignment
is infeasible, but that at least one more worker must be assigned to the station. If the
station has the maximum number of available workers assigned, an infeasible subproblem
shows that the assignment itself is infeasible.

Both Akpinar et al. [2017] and Michels et al. [2019] apply the combinatorial Benders'
decomposition to deterministic assembly line balancing problems. In a stochastic context,
Bentaha et al. [2015] survey several applications applying Benders' decomposition to the
balancing of disassembly lines. These approaches, however, contain linear subproblems,
so that the standard cuts based on the shadow prices are applicable.

4.2.3 Proposed algorithm

The decomposition strategy used for solving the problem as well as the improvements
implemented in the algorithm are presented in this section.

Model decomposition

Benders' decomposition requires the problem to be split between a master problem (MP)
and one or more subproblems (SP). The master problem keeps the variables and restric-
tions related to the assembly-line balancing, while the subproblem is responsible for the
sequencing and scheduling of the stations. From the monolithic model (expressions (4.1)-
(4.14)), the binary variable x as well as the expressions (4.2)-(4.4) form the master prob-
lem. A variable θds is used as an auxiliary variable to approximate the objective function
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of the subproblem for station s in scenario d. The objective function of the master problem
is then the weighted sum of approximation variables

Minimize
∑
d∈D

∑
s∈S

Prd · θds
|MPSd|

. (4.23)

The combinatorial cuts are de�ned in a set of cuts K. Set K starts empty and is used
to store the combinatorial cuts found within the algorithm iterations. These cuts are an
adaptation of inequality (4.21) [Laporte and Louveaux, 1993] and are implemented as

∑
s∈Ck

θds ≥ θkd ·

 ∑
(t,s)∈Sk

xts − |Sk|+ 1

 ∀ k ∈ K, d ∈ D. (4.24)

On the left-hand-side of the expression, the corresponding sum of related θd,s is used
instead of a single variable θ. This is necessary for �partial combinatorial cuts�, which are
based on a subset of the stations (Ck) and are described bellow. The right-hand-side is
based on the sum operator in set Sk, which contains the task-station assignments for the
stations of Ck in iteration k. Ck is the set of stations used to generate the cut at iteration
k. As it is discussed bellow, cuts can be generated for all stations or by using a subset of
stations. That is, the sum

∑
(t,s)∈Sk xts counts the number of variables that are equal to

a given assignment Sk. The cut imposes a minimal value for the θds variables (θdk) if the
assignment is exactly the same as the one explored in iteration k. For di�erent solutions
(at least one assignment is di�erent), the cut does not constraint the θds variables.

The subproblems are responsible for the sequencing of models within the assembly
line. As each scenario d is independent of the other, |D| subproblems can be de�ned by
expressions (4.5) - (4.14). The objective is to

Minimize
∑

p∈{1,...,|MPSd|}

∑
s∈S

Ups, (4.25)

the necessary total utility work for the sequencing of models.

Tightening the formulation: Preprocessing and valid inequalities

According to Rahmaniani et al. [2017], one approach to deal with integer subproblems
in Benders' decomposition is to use all available information of the linear relaxation of
the subproblem and use combinatorial cuts to narrow the gap between the relaxation and
the integer solution. Therefore, it is important to tighten the formulation so that the
relaxation is as close as possible to the integer model [Fischetti et al., 2017].

In the next paragraphs, the development of preprocessing, valid inequalities, and alter-
native combinatorial cuts are presented. The descriptions of the Balancing preprocessing,
Valid inequalities based on the linear relaxation, Unavoidable idle time, and Partial combi-

natorial cuts are taken from Sikora [2021]. A further improvement is to use local search in
the master problem to �nd better solutions quickly. The integrated local search procedure
is not contained in Sikora [2021] and is therefore only proposed here.

Balancing preprocessing

The preprocessing consists of identifying beforehand assignment variables that cannot as-
sume the value 1 in the optimal solution. For the simple assembly-line balancing problem,
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Patterson and Albracht [1975] de�ne the earliest (Et) and latest (Lt) station a task t can
be assigned to. The preprocessing is based on equations (4.26) and (4.27) and uses the
sum of the processing times of the task's predecessors and successors to de�ne its bounds.
In equation (4.26), Prec+ is the set of all direct and indirect precedence relations, so that∑

(i,t)∈Prec+ Duri is the sum of the processing time of all predecessors of task t and d·e
is the ceiling function. The numerator is the minimal amount of time that is needed to
process a task and its predecessors, which divided by the cycle time returns the smallest
number of stations required for its assignment. Similarly, equation (4.27) is used for the
upper bound on the line position.

Et =

⌈
Durt +

∑
(i,t)∈Prec+ Duri

CT

⌉
∀ t ∈ T (4.26)

Lt = |S| − 1 +

⌈
Durt +

∑
(t,i)∈Prec+ Duri

CT

⌉
∀ t ∈ T (4.27)

Patterson and Albracht's 1975 preprocessing is based on an assembly line with only
one model. The adaptation of these bounds for the proposed problem has to consider the
multiple models and the demand scenarios. A �rst preprocessing possibility is to consider
an average model. Eavg

t and Lavgt are de�ned as the earliest and latest station based on
the tasks' average durations using the same expressions of equations (4.26) and (4.27).
This average duration is the weighted average based on the demand for the products and
the scenarios' probabilities. This bound is only valid under the assumption that the line
can operate for the average model (the single model equivalent, for which the duration of
each task is equal to the expected duration of the task) without requiring utility work.
This is not unrealistic, since the assembly line would be undersized if it could not handle
the planned workload on average.

Treating models individually also provides bounds for the assignment variables. In
inequality (4.4) of the monolithic model, it is assumed that all models can be produced
within the station length. That is, no processing time equivalent may be larger than the
size of the station (LM · CT ), otherwise, the production would be infeasible even with
utility work. A model-speci�c Earliest Station for model m

Em
t =

⌈
Durtm +

∑
(i,t)∈Prec+ Durim

CT · LM

⌉
∀ t ∈ T,m ∈M

and Latest Station

Lmt = |S|+ 1−

⌈
Durtm +

∑
(t,i)∈Prec+ Durim

CT · LM

⌉
∀ t ∈ T,m ∈M

are valid for the problem if the station length is considered as the loading limit of each
station.

As any assignment (t, s) outside the interval [Em
t , L

m
t ] for any model m is infeasible,

the intersection of the average and the model-speci�c bounds can be computed. The
resulting sets are used to specify the balancing variables, which already excludes many
variables that could not result in a feasible answer from being set to a value of 1.
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Valid inequalities based on the linear relaxation

As already mentioned, Rahmaniani et al. [2017] describe in their survey the use of the
shadow prices of the linear relaxation of the subproblem in Benders' decomposition. For
the presented problem, however, it is not necessary to solve the linear relaxation of the
subproblem, since the deriving cut can be simply de�ned as

θds ≥
∑
t∈T

∑
m∈M

Durtm ·Demm · xts − |MPSd| · CT ∀ d ∈ D, s ∈ S. (4.28)

The development and proof of the expression are given in the online appendix A of Sikora
[2021].

One interpretation for cut (4.28) is that utility work is necessary if the assignment
of any station is overloaded in any demand-scenario. That is, the sum of the processing
times is larger than the available processing time (|MPSd| ·CT ), resulting in utility work
independent of the sequence. This cut is intuitive and can be added directly to the master
problem.

Unavoidable idle time

The cut based on the linear relaxation of the subproblem can be improved if idle time
can be identi�ed in the master problem. As each new product �ows into the station after
a cycle time (CT time units), very short processing times that result in idle time may
be detected in the master problem already. For this cut, the non-negative variable Ims is
used as an auxiliary to measure the unavoidable idle time of a model m in station s. A
lower bound on the idle time can be calculated by

Ims ≥ (2− LM) · CT −
∑
t∈T

Durtm · xts ∀ m ∈M, s ∈ S. (4.29)

For the explanation of the cut, an example is illustrated in Fig. 4.2. After �nishing
a model, the worker returns the equivalent of CT time units to the beginning of the
station. Hence, the maximal start position is LM · CT − CT . If the processing time
of any model is shorter than the di�erence between this point and the cycle time mark
(
∑

t∈T Durtm·xts ≤ CT−(LM ·CT−CT ) = (2−LM)·CT ), idle time occurs independently
of the sequence. Therefore, cut (4.29) implements a lower bound on the idle time and
can be included in the master problem formulation. Note that this cut is only useful if
the line length is smaller than twice the cycle time (LM < 2). Otherwise, at least two
products would be at the station at any given time and the lower bound on the idle time
given by the cut is zero.

The unavoidable idle times due to the lower bound restriction of cut (4.29) can be
integrated into the cut based on the linear relaxation. Expression

θds ≥
∑
t∈T

∑
m∈M

Durtm ·Demm · xts +
∑
m∈M

Demm · Ims − |P | · CT ∀ d ∈ D, s ∈ S (4.30)

uses the information of the idle times to strengthen the cut, since the idle times reduce
the available time for processing.
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Figure 4.2: Example of assignment that invariably causes idle time. Figure from Sikora [2021].

Partial combinatorial cuts

Although the preprocessing and the linear-relaxation cut help bridging the gap between
the objective function approximation on the master problem and the realization of the
subproblems, they are not enough to de�ne the formulation of the problem. As cited in
Laporte and Louveaux [1993] as well as Codato and Fischetti [2006], combinatorial cuts
may be needed to represent the whole objective function landscape. These combinatorial
cuts are, however, very local, in a way that they only apply to the explored solution
or solution subset. Cut (4.24) built based on the assignment of all stations would only
correct the approximation value of the assignment at iteration k. For all other possible
assignments in which at least one variable di�ers, the restriction is not binding.

In order to generate cuts that a�ect the approximation of other assignments, cuts
based on partial assignments are proposed. For these cuts, sequencing subproblems are
solved for a subset of the workstations, which form the workstations set Ck de�ned in
expression 4.24. The solutions to these problems are not representative of the whole
sequencing problem, since the sequence has to be the same for all stations. However,
considering a subset of stations provides a lower bound for the objective function of the
whole line. Therefore, the lower bound found for the partial assignments can also be given
as a cut to the master problem. Since cut (4.24) is already written in terms of a subset
of stations, the same cut can be used as the �complete� (based on all stations) as well as
the partial (based on a subset of stations) cut.

The proposed cut is illustrated with a small numeric instance given in Table 4.3. The
same example is used in the description of Sikora [2021]. For the instance, four stations
and four models are given (M1-M4). For simplicity, only one demand scenario with an
MPS of 1-1-1-1 is considered. Further parameters are a cycle time of �ve time-units and
a station length of seven time-equivalent units. Table 4.3 contains the processing time of
the eight tasks and three balancing solutions So1, So2, and So3.

The �rst balancing solution (So1) corresponds to the station-wise processing times
presented in Table 4.4. This solution is feasible for the master problem and has an
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Table 4.3: Task durations and solutions for an example instance. The columns `Solution' con-
tains the station to which each task is assigned.

Processing Time Solutions

Task M1 M2 M3 M4 So1 So2 So3

1 4 2 2 4 1 1 1

2 2 1 1 3 1 1 2

3 3 2 1 1 2 2 1

4 4 4 3 2 2 2 2

5 1 1 2 3 3 3 3

6 2 3 4 4 3 4 3

7 5 4 2 2 4 3 4

8 2 3 1 1 4 4 4

approximated objective function value of zero. That is, no utility work is expected. By
solving the sequencing problem, the optimal sequencing solution 1−3−2−4 is obtained.
This solution, however, contains one unit of utility work. The combinatorial cut (4.24)
becomes in this case

θ1 + θ2 + θ3 + θ4 ≥ 1 · (x11 + x21 + x32 + x42 + x53 + x63 + x74 + x84 − 8 + 1). (4.31)

This cut can be incorporated into the master problem to correct the approximation of the
objective function value for this assignment. A possibly optimal solution of the master
problem with the cut (4.31) is represented by So2 in Table 4.3. This balancing solution
also has an objective function approximation value of zero, which is not corrected by
cut (4.31). The subproblem sequencing optimal solution is also 1− 3− 2− 4 containing
one unit of utility work. In this example, cut (4.31) could not be extended to other
assignments, as the information (one unit of utility work is caused) is only valid for
exactly that assignment.

Table 4.4: Processing times per station and model for the �rst balancing solution.

Station

Model 1 2 3 4

1 6 7 3 7

2 3 6 4 7

3 3 4 6 3

4 7 3 7 3

The partial cuts present an alternative and use lower bounds to generate cuts. Solving
the sequencing of each station of So1 individually results in the sequence 1− 2− 4− 3 for
the �rst station and 1 − 3 − 2 − 4 for the others containing no utility work. Combining
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the �rst and the second station in a partial subproblem results in the optimal sequence
1−3−2−4 with one unit of utility work. This solution is a lower bound for the sequencing
problem, since considering more stations would result in the same one unit of utility work
or more. The resulting cut

θ1 + θ2 ≥ 1 · (x11 + x21 + x32 + x42 − 4 + 1) (4.32)

provides a valuable piece of information to the master problem: the unit of utility work
from So1 is caused by the bad correspondence of the assignments of stations 1 and 2.
Cut (4.32) contains fewer variables, which potentially form di�erent assignment solutions
in the master problem. Solution So2 of Table 4.3, for instance, also contains the same
assignments. This solution would not be explored by the master problem in the presence
of cut (4.32), reducing the number of master problem solutions that must be explored in
the algorithm. The optimal solution for the problem is So3, which does not need utility
work for the sequence 1− 3− 2− 4.

The partial combinatorial cuts are very useful if utility work on subsets of stations can
be identi�ed. The partial combinatorial cuts are also valid for other assignments so that
the information helps the quality of the master-problem approximation of the objective
function. A related approach is described in Fischetti et al. [2016] in the context of relaxing
�xed-cost restrictions. The relaxed problems are also lower bounds of the problem, for
which cuts can be de�ned.

The strategy of solving subsets of the problem may be applied to other optimization
problems as well. If the optimal solution of the subset of the problem produces a lower
bound (for minimization problems), the approach may be adequate. In the assembly-line
context, decomposing based on stations results in a lower bound. Solving the sequencing
problem for a subset of models, however, provides an upper bound of the problem, when
the subsequences are then merged together. Although this may be a valid method to
obtain valid sequencing solutions, the objective function value is an upper bound and
may not be used for cut generation.

It is important to notice that the partial subproblems are as complex as the complete
subproblem, so that it may not always be advantageous to solve multiple partial subprob-
lems. For the proposed problem, the sequencing problems with a small subset of stations
are solved quickly with commercial solvers and have shown themselves a viable approach
to generate cuts.

Integrated local search

An iterative decomposition procedure consists of solving master and subproblems repeat-
edly. Rahmaniani et al. [2017] advise a good balance between the solution time that is
required by the master problem and the subproblems. It is, however, common, that the
master problem requires longer solution times to produce feasible solutions. One of the
approaches to reduce the solution time of the master problem is to use heuristics to obtain
solutions [Costa et al., 2012; Rahmaniani et al., 2017; Caserta and Voβ, 2020].

In this section, an idea presented by Caserta and Voβ [2020] is used to accelerate
the convergence of the algorithm. Instead of solving the whole master problem to �nd
the solutions, an integrated local search is used on the master problem to obtain feasible
solutions fast.

The local search can be performed in the mathematical model that de�nes the master
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problem adding restrictions of the form

∑
(t,s)∈Sw

xts ≤ |T | − 1 (4.33)

∑
(t,s)∈Sw

xts ≥ |T | −R. (4.34)

In the expressions, Sw represents the task-station pairs of the balancing solution of itera-
tion w, and R is a constant. Constraints (4.33) and (4.34) restrict the balancing variables
to a solution that are similar to but di�erent from solution Sw. The parameter R is the
search radius and is equivalent to the number of assignments that can be changed in the
local search. With these restrictions, the search space is strongly restricted to the region
near to a known solution. This way, a quick search of the neighborhood may provide fast
feasible solutions and accelerate the overall convergence of the decomposition [Caserta
and Voβ, 2020].

Description of the algorithm

In the original Benders' decomposition by Benders [1962], both the master and subprob-
lems are solved to optimality in every iteration of the algorithm. The optimality of the
master problem is, however, not required for the solution of the subproblems and the
generation of cuts. According to the survey of Rahmaniani et al. [2017], the time required
to solve the master problem can take more than 80% of the solution time, so that the
complete solution of the master problem can be very costly. Fischetti et al. [2017] present
a �modern implementation� of Benders' decomposition, in which the master problem is
solved only once. Several universal solvers support the use of callbacks, that add cuts
dynamically to the formulation. This way, Benders' decomposition cuts can be added
�on the �y� for every feasible solution found in the master problem, increasing the speed
of the algorithm [Codato and Fischetti, 2006; Costa et al., 2012; Akpinar et al., 2017;
Fischetti et al., 2017; Michels et al., 2019].

The algorithm is described in Algorithm 1. The master problem is solved with a single
call in a solver and the other functions are called every time a new incumbent solution is
found. That is, a feasible balancing solution for the master problem with a corresponding
approximation for the utility work. In the initialization, the global upper bound UB
and the master problem's lower bound LB are set. The search of the master problem
continues until the global upper bound and the master problem's lower bound are the
same, providing the optimal solution.

For each solution found in the master problem, the corresponding subproblems are
solved in the routine `ExploreSolution'. In this process, combinatorial cuts are added
to the master problem, which are considered for the next solutions. Before returning to
the master problem, a given number of iterations of a local search is performed for each
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solution found for the master problem.

Algorithm 4.1: Combinatorial Benders's decomposition
Result: Optimal solution
LB = 0; UB = ∞ ;
while UB > LB do

Sol = FeasibleSolution(MasterProblem);
LB = MasterProblem.LowerBound;
i = 0;
while i < No. Iterations Local Search do

ExploreSolution(Sol, UB,Depth);
Sol = LocalSearch(Sol, R);
i+ +;

end

end

The exploration of the solution in the subproblem level is described in Algorithm 2.
The subproblems are explored in two levels. The �rst optional part of the algorithm de-
pends on a parameter Depth, which controls how the stations are combined in the partial
subproblems. A depth of one represents solving each station individually, a depth of two
combines two stations, etc. The number of combinations is also part of the algorithm
design. Options are to solve all combinations for a given number of stations or just a
subset of them. The solution of the partial problems results in a lower bound for each
depth i (LBl

i). If the lower bound of the given solution surpasses the global upper bound
(UB), the solution can be cuto� with combinatorial cuts and does not need to be explored
further. If the solution is not cut o� based on the partial subproblems, the subproblems
are explored in the second level of the algorithm (after the while function). The complete
subproblems are solved (SolveSubProblems) resulting in a local upper bound (UBl). If
the local upper bound is better than the previous best solution (UB), the global upper
bound is updated. Every time any utility work is identi�ed, cuts are added to the master
problem.

Algorithm 4.2: ExploreSolution(Sol, UB,Depth)
Result: Solve the subproblems and add cuts
i = 1; while i ≤ Depth do

LBl
i = SolvePartialSubProblems(Sol,Depth);

AddCuts;
if LBl

i >= UB then
exit routine

else
i++

end

end
UBl = SolveSubProblems(Sol);
AddCuts;
if UB > UBl then

UB = UBl

end

For the results described in the next section, some values for the implementation
parameters are set. The Depth is set to 3 so that the combinations of up to three
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workstations are solved as partial subproblems. Not all combinations are explored, but
the selection is made as a minimal cover of all stations. For simplicity, the stations are
gathered in sequential order (that is, 1-2, 3-4, ...). The search radius (R) of the local
search is set to 6 tasks, that is, at most 6 tasks can be reassigned in each iteration of the
local search. The number of iterations of the local search is set to 3. Finally, a time limit
of 60 seconds is used for each iteration of the local search, so that the solution procedure
does not get stuck by chance in problems that may be too time-consuming to solve.

4.3 Tests and results

The algorithm's results and performance are discussed in this section. As the algorithm
is already explored in Sikora [2021], the results of this manuscript are meant to be com-
plementary to those of the paper. For the datasets described in Section 4.3.1, the e�ects
of the partial cuts (Section 4.3.2) and the local search (Section 4.3.3) are analyzed.

4.3.1 Dataset

The instances used for the tests are based on two datasets. The �rst is contained in Sikora
[2021]. This dataset has 80 instances and is built based on the single model instances
from Otto et al. [2013]. For each instance, the number of used product models (|M |) is
10, so that ten single model instances are used to generate one mixed-model instance.
The parameters for the instance generation are described in Table 4.5. All instances are
based on the medium-sized instances of Otto et al. [2013], containing 50 tasks (|T |). The
number of stations (|S|) is �xed to 10, while 5 demand scenarios are used (|D|). The
variable parameters are the ordering strength (OS), the average processing load (PL),
and the station length multiplier (LM). The OS is a measure of how many precedence
relations exist from all possible relations [Otto et al., 2013]. The parameter PL is the
expected load of the line. A value of 90% means that on average, workers need to operate
90% of the time to �nish the production considering every model of every demand scenario.
A production level of 100% is virtually impossible, since there may be idle times generated
by the balancing or the sequencing of the di�erent products. Finally, the length of the
station is de�ned by the length multiplier (LM ≥ 1). As above, the station length is
LM ·CT , which may be the equivalent of 120%, 150%, or 200% of the cycle time. These
parameters can be interpreted as the problem �exibility. The ordering strength is related
to the task assignment �exibility; the average processing load is an e�ciency �exibility (or
how tight the line sizing is); the length multiplier a�ects the station length and therefore
the sequencing �exibility.

Table 4.5: Parameters used in the generation of the dataset.

Parameter Values
Number of tasks (|T |) 50
Number of models (|M |) 10
Number of stations (|S|) 10
Number of demand scenarios (|D|) 5
Ordering strength (OS) 20% / 60% / 90%
Average processing load (PL) 90% / 95%
Length multiplier (LM) 120% / 150% / 200%

The parameter PL is directly related to the cycle time of each instance. The formula
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for determining the cycle time is given by

CT =

⌈∑
t∈T
∑

m∈M
∑

d∈DDurtm ·Demmd · Prd
PL ·NS

⌉
.

The �ve demand scenarios are described in Table 4.6. For this dataset, the probability
of each demand scenario is considered to be equal (20%). The demand for each model
varies in each scenario. The scenario generation is inspired by the work of Chica et al.
[2013], who de�ne production plans containing the demand of the individual products.
Scenario 1 has the same demand for each model. Scenarios 2 and 3 have a demand for
only products of family 1 (models 1, 2, 3, and 4) or family 2 (models 5, 6, 7), respectively.
Scenarios 4 and 5 present a mix of families 1 and 3 (models 8, 9, and 10) and 2 and 3,
respectively.

Table 4.6: Model demand for each of the scenarios in every instance of the dataset.

Model No.
Scenario 1 2 3 4 5 6 7 8 9 10 Prob.

1 1 1 1 1 1 1 1 1 1 1 0.2
2 3 3 2 2 0 0 0 0 0 0 0.2
3 0 0 0 0 4 3 3 0 0 0 0.2
4 2 2 2 1 0 0 0 1 1 1 0.2
5 0 0 0 0 2 2 2 2 1 1 0.2

The second dataset contains instances similarly generated, but uses slightly di�erent
settings. This dataset is used for a full enumeration in Subsection 4.3.2 and therefore is
built with only 8 stations. Furthermore, PL values of 80 % and 100 % are also tested.

The instances and results of the �rst dataset are available in the online supplemen-
tary material of Sikora [2021]. Furthermore, supporting �les of this chapter can be
found at https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html
or https://celso-sikora.com/publication-list.

4.3.2 Strength of the partial cuts

This section brings the results of tests on the e�ect of the partial cuts. The instances used
for the test are contained in the second dataset, containing instances with 8 stations.

The experiment to measure the strength of the partial cuts is developed by building
all possible cuts of a given depth and comparing the lower bound with the upper bound
of the assignment solution. Table 4.7 contains the results for the solutions obtained for
33 instances. The 33 instances were solved with the algorithm without the partial cuts
and local search enhancement and all intermediary feasible assignments were stored. For
each of the 7,880 balancing solutions (of the 33 instances), the subproblems consisting of
all combinations of stations are solved. The values of the ratio of the lower bound and
the upper bound are reported in Table 4.7. This value ranges from 0 to 1, in which 1
means that the lower and upper bound are identical.

The solutions are displayed based on the instance that is used to generate them. The
33 lines of Table 4.7 represent all 7,880 solutions found during the computation of the
instances. Column �No. Sol.� displays how many feasible solutions are found for instance.
The Columns LB0 to LB5 represent the strength of the partial cuts for di�erent levels
of the Depth parameter. LB0 is the lower bound based just on the linear relaxation cut.
LB1 is the relative bound obtained after sequencing all stations individually. LB2 (and
the other ones) shows the relative bound when solving the sequencing problem of every

https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html
https://celso-sikora.com/publication-list
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Table 4.7: Strength of the partial cuts for sample solutions.

OS PL LM No. Sol. LB0 LB1 LB2 LB3 LB4 LB5

0.2 0.8 1.2 46 0.552 0.876 0.924 0.970 0.995 1
0.2 0.8 1.5 11 0.954 0.955 0.983 1 1 1
0.2 0.8 2.0 3 1 1 1 1 1 1
0.2 0.9 1.2 1434 0.433 0.737 0.826 0.927 0.970 0.990
0.2 0.9 1.5 154 0.727 0.902 0.979 0.999 1 1
0.2 0.9 2.0 14 1 1 1 1 1 1
0.2 0.95 1.2 470 0.528 0.879 0.909 0.946 0.969 0.982
0.2 0.95 1.5 168 0.857 0.945 0.973 0.988 0.997 1
0.2 0.95 2.0 33 1 1 1 1 1 1
0.2 1.0 1.5 629 0.858 0.923 0.966 0.987 0.996 0.998
0.2 1.0 2.0 36 1 1 1 1 1 1
0.6 0.8 1.2 20 0.798 0.958 0.982 0.991 0.997 1
0.6 0.8 1.5 10 0.940 0.976 1 1 1 1
0.6 0.8 2.0 6 1 1 1 1 1 1
0.6 0.9 1.2 1359 0.370 0.728 0.865 0.942 0.974 0.990
0.6 0.9 1.5 15 0.999 0.999 1 1 1 1
0.6 0.9 2.0 15 1 1 1 1 1 1
0.6 0.95 1.2 67 0.632 0.934 0.955 0.978 0.987 0.994
0.6 0.95 1.5 369 0.767 0.955 0.973 0.988 0.997 0.999
0.6 0.95 2.0 32 1 1 1 1 1 1
0.6 1.0 1.5 783 0.965 0.994 0.997 0.997 0.999 1
0.6 1.0 2.0 20 1 1 1 1 1 1
0.9 0.8 1.2 123 0.677 0.945 0.980 0.993 0.999 1
0.9 0.8 1.5 19 0.994 1 1 1 1 1
0.9 0.8 2.0 5 1 1 1 1 1 1
0.9 0.9 1.2 932 0.347 0.728 0.834 0.915 0.966 0.993
0.9 0.9 1.5 30 0.910 0.964 0.992 0.999 1 1
0.9 0.9 2.0 6 1 1 1 1 1 1
0.9 0.95 1.2 753 0.755 0.944 0.96 0.977 0.989 0.994
0.9 0.95 1.5 114 0.827 0.941 0.971 0.998 0.999 1
0.9 0.95 2.0 23 1 1 1 1 1 1
0.9 1.0 1.5 154 0.981 0.990 0.995 0.997 0.999 1
0.9 1.0 2.0 27 1 1 1 1 1 1

possible combination of two (or more) stations. The complete enumeration of the cuts
is performed up to the combination of �ve stations. Note that these bounds require all
combinations of stations, which may not applicable or not bene�cial in a search algorithm
due to excessive computation time.

The results demonstrate the e�ects of the parameter level used to build the instance.
Long stations with LM = 2, for instance, provide large sequencing �exibility. For this
case, the approximation of the master problem and the result of the subproblems are
identical for the tested instances. Therefore, the sequencing of these instances does not
have large importance. Implementing such systems, however, may be costly because they
require a lot of space.

The study helps to identify the instances in which the master problem can badly ap-
proximate the objective function. From Table 4.7, the instances with short station lengths
(LM = 1.2) present a large di�erence between lower and upper bound (in particular for
PL = 0.9). Furthermore, it can be seen that the improvement of the gap decreases with
the addition of further stations. From this analysis and experimental tests, the combina-
tions with up to 3 workstations are selected for the design of the solution algorithm, as
implemented in Sikora [2021].
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4.3.3 E�ect of the local search

The 80 instances of the �rst dataset are solved with a time limit of 3,600 seconds for
this test. Benders' decomposition algorithm is implemented in Visual Basic 15.0 and the
master and subproblems are solved using the commercial solver Gurobi 8.1. The tests are
performed on an Intel i7 8700K processor with 6 cores at 4.0 GHz and 32 GB of RAM.

The master problem is solved only once. For each feasible solution found, callbacks
are used to generate subproblems, solve them, and add combinatorial cuts. The cuts are
then added as `lazy cuts' as suggested by Fischetti et al. [2017].

The results of this section extend the ones of Sikora [2021], in which the local search
is integrated into the algorithm. In Table 4.8 the results are summarized. Each row of
the table contains information from one version of the solution method. As a comparison,
the monolithic model (the MILP model without any decomposition) is also displayed.
In the summary of results, the average upper bound (UB), lower bound (LB), number
of instances solved to optimality (Opt) are displayed. The solution time is divided into
the solution time used for solving the master problem (Master) and the subproblems
(Sub). As the monolithic model does not have the division of master and subproblems,
the average of the total solution time is displayed. The columns named under # Nodes
contain the average number of incumbent and cuto� nodes found by the algorithm. `L1'
refers to nodes that are proven not to be optimal after applying combinatorial cuts based
on one station only. Similarly, the `L2&3' column has the average number of nodes cut
o� after applying combinatorial cuts combining 2 or 3 stations. The average number of
nodes cut out after solving the complete subproblems (all stations) is displayed under the
column `Full'. The incumbent nodes (Inc) were not cut out by the combinatorial cuts and
presented a better solution than the known upper bound during the search. Finally, the
number of generated combinatorial cuts is displayed under column `# Cuts'. The cuts
are divided into `L1', `L2&3', and `Full'-cuts, representing the combinatorial cuts using 1
station, 2 and 3, and all stations, respectively.

From the results of Table 4.8, it can be noticed that the integration of the local
search improves the algorithm. The di�erence is, however, not large, since only one extra
instance can be solved with the addition of the local search. The average value of the
upper bound is reduced from 201.98 to 193.00, which shows that the algorithm of Sikora
[2021] can be further improved with the local search addition. The lower bound with the
local search is worse than the one of the base algorithm. This di�erence is due to only one
instance (instance number 49), for which the lower bound was still evaluated at 0 after
3,600 seconds of solution time for the algorithm with local search. No reason besides a
di�erent behavior of the solver can be identi�ed.

Table 4.8: Summary of the algorithm results.

Sol. time # Nodes # Cuts

Method UB* LB Opt Master Sub L1 L2&3 Full Inc L1 L2&3 Full

Monolithic 254.61 145.45 49 1499.2

Base Algorithm 201.98 168.08 66 727.1 45.1 0.7 1.4 6.0 15.0 12.7 15.7 22.7

With LS - Radius 3 197.42 161.82 67 816.9 28.5 0.4 0.9 5.1 7.9 8.3 12.0 16.3

With LS - Radius 10 193.00 161.26 67 978.7 33.0 0.2 0.9 5.4 8.4 7.5 14.5 18.8

*The upper bound column (UB) contains the average of only 77 of the 80 instances, since not all methods (Base

Algorithm and Monolithic Model) could �nd a feasible solution for all instances.

The average results of each instance group are described in Tables 4.9, 4.10, and
4.11. As already discussed in the results of Sikora [2021], most of the time used by
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the search algorithm is spent on the master problem. According to Rahmaniani et al.
[2017], algorithm designers should aim at a good balance between the time spent in
the master and the subproblems. The idea of integrating the local search into Benders'
algorithm [Caserta and Voβ, 2020] is an attempt to shift the focus to the subproblem
since feasible master-problem solutions would quickly be obtained by local search. This
expected behavior is, however, not observable in the test results. The solved instances
show an even more uneven distribution of the e�ort to solve master and subproblems.
In a close inspection of the solution �les, it is observable that the algorithm with local
search can �nd good quality solutions earlier than the base algorithm. These good quality
solutions prune several assignments that would be explored by the base algorithm but do
not need to be tested based on a better upper bound value. Therefore, this at �rst glance
counterintuitive e�ect of reducing the number of explored nodes occurred by integrating
local search into the algorithm.

Table 4.9: Results of the base algorithm without local search as implemented in Sikora [2021].
Each line contains the average results of 5 instances of each combination of param-
eters.

Parameters Sol. time # Nodes # Cuts

OS PL LM UB LB Opt Master Sub L1 L2&3 Full Inc L1 L2&3 Full

0.2 0.9 1.2 0 0 5 60.5 51.9 1.4 4.2 8.4 13.6 23.2 25.4 35.8

0.2 0.9 1.5 0 0 5 1.2 14.6 0.2 0.2 0.8 12.4 3.6 3.8 10

0.2 0.9 2 0 0 5 1.2 1.9 0 0 0 11.6 0 0 0

0.2 0.95 1.2 338.78 0 0 3441.2 158.9 1.8 4.3 15.8 11.5 68.0 76.8 71.0

0.2 0.95 1.5 0 0 5 560.6 38.7 3.4 5.2 9.2 22.8 16.6 20.2 28.8

0.2 0.95 2 0 0 5 17.1 3.3 0 0 0 17.4 0 0 0

0.6 0.9 1.2 11.52 0 3 1627.9 89.3 0.8 1.8 16.4 12.4 30.0 25.8 57.4

0.6 0.9 1.5 0 0 5 3.1 11.3 0.4 0.6 2.6 14.6 4.4 6.4 9.8

0.6 0.9 2 0 0 5 1.9 2.4 0 0 0 14.2 0 0 0

0.6 0.95 1.2 810.9 346.55 2 2853.4 223.3 0.6 1.4 16.8 8.4 56.6 68.2 77.2

0.6 0.95 1.5 70.12 26.02 2 2091.2 106.6 2 5.4 26.8 23.4 10.2 36.2 69.2

0.6 0.95 2 30.72 23.68 4 923.8 4.3 0 0 0 20 0 0 0

0.9 0.9 1.5 90.02 90.02 5 2.6 12.2 0 0.4 1.4 13 2.0 1.8 4.6

0.9 0.9 2 62.32 62.32 5 4.3 3.1 0 0 0 16.4 0 0 0

0.9 0.95 1.5 1133.9 1133.9 5 2.9 28 0.2 0 1.4 11 1.4 1.6 14.0

0.9 0.95 2 1006.7 1006.7 5 8.7 3.8 0 0 0 19.6 0 0 0

Average / Total 220.71* 168.08 66 725.1 47.1 0.67 1.47 6.22 15.14 13.5 16.63 23.61

*The average of the upper bounds refers to 79 instances with a feasible solution. No feasible solution was found in

3,600 s for one instance.

The results displayed in Tables 4.10 and 4.11 are related to the algorithm with 3 and
10 iterations of the local search algorithm, respectively. The di�erence in the number of
iterations has direct implications in the average solution time required for the algorithm.
For 14 of the 16 instance groups (sets of instances with same parameter constellation), the
version of the algorithm with 3 iterations requires less time. The quality of the solution
based on their upper bound varies. For some instances, the method with 3 iterations
performs better, while the opposite occurs using 10 iterations for other instances. In
general, the local search improves the solution quality of the algorithm. Increasing the
number of iterations of the local search, however, does not necessarily lead to better
solutions.
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Table 4.10: Results of the algorithm with local search with 3 iterations per feasible solution.

Parameters Sol. time # Nodes # Cuts

OS PL LM UB LB Opt Master Sub L1 L2&3 Full Inc L1 L2&3 Full

0.2 0.9 1.2 0 0 5 152.0 13.4 1.4 1.6 8.0 4.8 4.6 4.6 14.4

0.2 0.9 1.5 0 0 5 23.5 2.9 0 0 0 4 0.6 0.4 1.4

0.2 0.9 2 0 0 5 8.5 0.9 0 0 0 5.6 0 0 0

0.2 0.95 1.2 241.14 0 0 3543.0 90.7 0.5 3.0 6.3 7.8 35.8 42.8 41.8

0.2 0.95 1.5 0 0 5 579.7 12.8 2.2 2.6 3.8 7.8 7.4 8.2 15.8

0.2 0.95 2 0 0 5 557.5 1.7 0 0 0 8.4 0 0 0

0.6 0.9 1.2 8.10 0 4 1396.2 67.8 0.6 3.8 30.2 6.8 9.2 27.6 54.8

0.6 0.9 1.5 0 0 5 23.7 2.8 0.4 0 1.0 4.2 2.0 0.8 2.6

0.6 0.9 2 0 0 5 15.5 1.2 0 0 0 6.4 0 0 0

0.6 0.95 1.2 778.90 234.27 2 2628.2 201.6 0.2 1.4 15.8 8.6 62.6 78.8 78

0.6 0.95 1.5 62.44 33.90 2 2324.3 45.2 0.8 3.0 16.0 16.0 14.0 31.4 44.6

0.6 0.95 2 29.64 27.92 4 1726.2 3.4 0 0 0 14.8 0 0 0

0.9 0.9 1.5 90.02 90.02 5 17.9 5.6 0 0 0.4 6.8 1.6 2.8 4.2

0.9 0.9 2 62.32 62.32 5 20.3 1.4 0 0 0 8.2 0 0 0

0.9 0.95 1.5 1133.94 1133.94 5 19.6 14.8 0 0 1.6 5.2 1.0 2.2 9.6

0.9 0.95 2 1006.68 1006.68 5 27.9 2.3 0 0 0 11.4 0 0 0

Average / Total 212.97* 161.82 67 816.9 28.5 0.4 0.9 5.1 7.9 8.3 12.0 16.3

*The average of the upper bound refers to 79 instances to enable the comparison between algorithms.

Table 4.11: Results of the algorithm with local search with 10 iterations per feasible solution.

Parameters Sol. time # Nodes # Cuts

OS PL LM UB LB Opt Master Sub L1 L2&3 Full Inc L1 L2&3 Full

0.2 0.9 1.2 0 0 5 299.2 22.4 1.6 3.6 14.6 6.4 6.2 7.4 23.4

0.2 0.9 1.5 0 0 5 32.8 2.9 0 0 0 4.2 0.6 0.4 1.6

0.2 0.9 2 0 0 5 14.8 0.8 0 0 0 5.0 0 0 0

0.2 0.95 1.2 154.27 0 0 3639.4 179.1 1.0 3.0 20.8 11.3 33.5 110.5 88.3

0.2 0.95 1.5 0 0 5 1422.1 9.0 0.2 0.6 0.8 7.2 3.4 5.2 12.0

0.2 0.95 2 0 0 5 773.3 1.4 0 0 0 7.8 0 0 0

0.6 0.9 1.2 8.10 0 4 1322.8 65.1 0.4 3.8 24.2 8.8 9.8 23.6 55.2

0.6 0.9 1.5 0 0 5 35.1 2.4 0 0 0 3.8 1.8 0.4 1.0

0.6 0.9 2 0 0 5 37.2 1.1 0 0 0 6.2 0 0 0

0.6 0.95 1.2 762.66 234.27 2 2938.7 197.6 0.2 1.4 15.0 9.2 49.2 78 75.8

0.6 0.95 1.5 79.20 37.36 3 2901.2 39.2 0.4 2.0 11.8 17.0 14.0 21.0 41.0

0.6 0.95 2 29.64 15.56 3 2080.2 3.4 0 0 0 15.8 0 0 0

0.9 0.9 1.5 90.02 90.02 5 28.3 6.5 0 0 1.0 7.4 1.8 2.4 6.2

0.9 0.9 2 62.32 62.32 5 45.1 1.6 0 0 0 8.8 0 0 0

0.9 0.95 1.5 1133.94 1133.94 5 39.1 14.1 0 0 1.6 5.0 1.0 2.4 9.6

0.9 0.95 2 1006.68 1006.68 5 72.1 2.1 0 0 0 11.2 0 0 0

Average / Total 208.61* 161.26 67 978.7 33.0 0.2 0.9 5.4 8.4 7.5 14.5 18.8

*The average of the upper bound refers to 79 instances to enable the comparison between algorithms.



Chapter 5

Balancing under no sequencing control

In this chapter, the assembly-line balancing is optimized for a production line under a
random sequence of products. In contrast to Chapter 4, in which the models can be
scheduled at wish, no control over the production sequence is assumed in the project
presented in this chapter.

5.1 Problem de�nition

The production system characteristics and the necessary assumptions to model an assem-
bly line under random sequences are introduced in this section.

In contrast to the problem analyzed in Chapter 4, no active decision power about the
order in which products are produced is assumed in this chapter. This assumption is not
realistic for the operation of assembly lines in the automotive industry, however, it is a
feasible alternative for the planning of an assembly line. The construction of an assembly
line is usually performed without the knowledge of the future production sequence. By
considering a random sequence, the planner opts for a pessimistic view of the product
sequencing. Furthermore, in real applications, the assembly line planner does not has full
control over the production sequence. Not only the �nal assembly line is responsible for
the sequencing objective function, but also the body-in-white and painting sectors need
to be considered in the solution. The optimal sequences for the multiple departments can
di�er. A second di�culty in integrating sequencing and balancing lays in the di�erent
time frames of these problems. The balancing problem is a strategic decision that happens
in the planning phase of an assembly line, while the sequencing is a tactical or even
operational decision that may be solved daily or weekly. Therefore, it is common that the
balancing solution procedures do not consider the sequencing, aim at smoothening the
workload at the balancing solution or use a proxy objective function [Emde et al., 2010].
An extra justi�cation for the lack of sequencing lays in the just-in-sequence production
often employed in the automotive industry [Bukchin et al., 2002]. As the products can be
highly customizable, the order in which they are ordered a�ects greatly the production
due dates. Therefore, the production sequence is highly correlated with the apparently
random order in which products are sold to the customers. Based on these issues of the
products' sequencing, a random production sequence for the balancing of an assembly line
is assumed here.

Considering a random in�ow of products can provide algorithmic advantages since the
sequencing problem does not need to be solved. The solved instances from Chapter 4
(Sikora [2021]), for instance, are limited to cyclical sequences of ten products. Under
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some assumptions, which are presented in this section, the balancing of lines with over
millions or billions of product combinations is possible [Boysen et al., 2009a]. In the
next paragraphs, the de�nition of a product model, as well as the production system
characteristics and assumptions are described.

The de�nition of a model depends on the concept of tasks and options. A task is every
indivisible operation that must be performed in the assembly of a product. Some tasks
may be performed in di�erent manners. For instance, the sunroof of a car may come
in di�erent forms and can be either manually or electrically controlled. These multiple
varieties of a task are called options [Boysen et al., 2009b]. Each task (e.g., mounting
the sunroof) is de�ned as a set of options (e.g., normal/wide, manual/electric) which
may require di�erent processing times. Tasks may present only a single option when the
operation is common for every product, or multiple options, including an option that
does not require any processing time (e.g., a car without a sunroof). A (product) model
is de�ned as the combination of all the options necessary to assemble the product. These
model combinations can account for astronomical numbers of possible products. The
variety of an assembly line with 20 tasks and 2 options per task already surpasses a
billion di�erent product models.

The focus of this chapter lays on the optimization of paced assembly lines under
a random production sequence. The objective of the optimization is to �nd the best
assignment of tasks to stations in terms of operating costs. These costs are measured
with respect to the station length and the expected utility work for the line's operation.
An example for the realization of a production sequence is given in Fig. 5.1 for one station,
which is similar to Fig. 4.1 in page 49. Again, the space between the left and the right
line represents the station length, in which the operations are performed. The equivalent
distance of a cycle time is marked with the vertical dashed line. Each horizontal bar
represents a product, while the y-axis represents the time axis in the form of discrete
cycles. The workers perform the tasks until a product is �nished, and then return to the
beginning of the line to start the operations for the next product. If the next product is
not yet available (as is the case of P3 after �nishing P2), idle time occurs, as the worker
must wait for the next piece. If a product requires more than the cycle time (as in P3),
the worker may continue the operations even though the next piece (P4) already enters
the station. The start position of the next piece (P4), however, is not at zero in this case.
If at any moment the operation cannot be �nished within the station's boundary, a utility
worker may be called to aid with the operations. The amount of time used by the utility
worker is called �utility work�, which is a proxy for the variable operational cost of the
line. In the �gure, the gray striped bar is used to denote the utility work that is used to
avoid the boundary violation shown by the dashed bar.

The worker schedule for the given product sequence as presented in Fig 5.1 is proven
to be optimal by Yano and Rachamadugu [1991]. The simple scheduling optimality rule
states that the worker performs the operations of a model until its completion before he
or she moves to the next product piece. Utility work is only used when the regular worker
would otherwise not be able to �nish the operation within station boundaries.

There is a trade-o� between the station length and the station's expected amount
of utility work. The same sequence realization is shown alternatively in Figure 5.2 for
a station with a longer length. Due to the extra �exibility, models P1 to P5 can be
processed by the regular worker without the need of utility work.

As illustrated in Fig. 5.1, the station borders are �xed and cannot be exceeded. This
restriction is important so that there is no interference between the workers of adjacent
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Figure 5.1: Realization of a production sequence in a paced assembly line. Utility work is used
to assure processing within station boundaries.

stations. Although all workers are bound by the same sequence of products, their internal
scheduling is independent. This independence is a critical assumption for the solution
method since the problem can in this case be decomposed. Although the line can ac-
commodate a huge number of possible models, each station processes a limited number
of tasks. The number of di�erent possible combinations within a station is rather lim-
ited. If 5 tasks with two options each are performed in a station, locally there exist only
32 di�erent models, which is much less than the total number of combinations for the
whole line. In order to treat only the locally observable variants within a station, another
assumption is required: the task processing times are independent as well. That is, the
processing time of each task does not depend on the options selected for the other tasks.

Based on the problem description and the assumptions, the problem is de�ned as the
assignment of tasks T to a given set of stations S while minimizing the operational costs.
Each task t has a set of options o ∈ Ot with di�erent integer processing times Durto and
a given relative demand Demto. The average processing time for each task is expressed as
Duravgt . To consider integer processing times, the real task duration can be multiplied by
10, 100, or 1000 and rounded to the nearest integer, which is common in the assembly-line
balancing literature [Scholl, 1999]. Assignments must obey precedence relations contained
in the paired set Prec. The number of stations is considered to be externally given so
that the variable station cost consists of the length of the stations and the expected utility
work. It is sensible to assume that the cost of the station length grows linearly with the
length and is related to the cost of the investment and maintenance of the conveyor belt
and the opportunity cost of the plant space. The cost of the utility work is assumed to be
a linear function of the expected utility work, which is described in more detail in Section
5.2. The optimization model is then given by

Minimize c1 ·
∑
s∈S

Lens + c2 ·
∑
s∈S

E
(
C(x1s, ..., x|T |s, Lens)

)
(5.1)

∑
s∈S

xts = 1 ∀ t ∈ T (5.2)
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Figure 5.2: Comparison of a realization of a production sequence in a paced assembly line with
longer station length. No utility work for P1-P5 is needed.

∑
k∈S:k≤s

xt1k ≥
∑

k∈S:k≤s

xt2k ∀ (t1, t2) ∈ Prec, s ∈ S (5.3)

∑
t∈T

Duravgt · xts ≤ CT ∀ s ∈ S (5.4)

xts ∈ {0, 1}, Lens ≥ 0 ∀ t ∈ T, s ∈ S. (5.5)

There are two decision variables, the assignment variables xts of a task t to a station s
and the length Lens of a station s. The objective function is described in expression (5.1).
The total cost containing the weighted sum line length costs and the expected utility work
of an assignment

∑
s∈S E

(
C(x1s, ..., x|T |s, Lens)

)
under a random sequence of products is

minimized. C is the amount of utility work required based on an assignment and a
station length. The calculation of the expected utility work expressed in the objective
function (equation (5.1)) is discussed in Section 5.2. Equation (5.2) is the occurrence
restriction. The precedence constraints are modeled in expression (5.3). Expression (5.4)
is a restriction on the average processing time in each station. Utility workers can be used
to compensate sequences of heavily loaded products, but the average processing time
must be within the cycle time (CT ), otherwise, the assembly line is undersized. Finally,
the assignment variables xts are binary, while the station length Lens is non-negative
(restriction 5.5).

5.2 Evaluating the expected utility work

In this section, it is shown how to obtain the expected utility work of a station for a given
task assignment and station length. The utility work calculation is based on the di�erent
varieties of products that can be processed in the station. As it is assumed that the tasks
are independent of each other, only the combinations of options of the tasks assigned to
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the given station must be considered. The formulation as a Markov process is inspired by
the applications on balancing and sequencing of unpaced lines by Lopes, Sikora, Michels,
Lindbeck da Silva and Magatão [2018] and sequencing with stochastic release dates by
Gwiggner [2020].

The set of models observable in a station s is namedM here. A model m is de�ned by
the subset of options selected for the product. From each task t assigned to the station
s, exactly one option out of the possible multiple options must be performed. The set of
the selected options for model m is given by the set Om. The processing time of model
m in station s is then given by

Durms =
∑

t∈T,o∈Om

Durto · xts ∀ s ∈ S,m ∈M.

Each model - as seen from the perspective of a station s - also has a probability Pms of
being ordered. Based on the individual probability Pto of one option o to be purchased,
the probability of a given model m as seen from station s is given by

Pms =
∏

o∈Om,t∈T |xts=1

Pto ∀ s ∈ S,m ∈M.

For this work, the options are assumed to be independent of each other and therefore the
product of the individual probabilities can be used. The evaluation using Markov chains is,
however, not limited to independent purchasing probabilities. Correlations could also be
used in the calculation of the relative demand (Pms) of each model m. For simplicity, only
the independent case is considered further. Furthermore, as the formulation is decomposed
based on stations, the station index s is dropped in the notation for the rest of this section
since the calculation can be applied for each station individually.

The Markov process used to calculate the expected utility work is based on the position
of the worker after �nishing a piece. As it can be seen in Fig. 5.1, the worker advances in
the line while processing a model and then returns to the beginning part of the station to
start processing the next model. This return can account for up to CT equivalent length
units (the launching interval between two products). Considering a worker position Pos
before the processing of a product with processing time Durm, the new initial position of
the worker in the next cycle is given by Pos+Durm−CT (assuming no utility work and
no idle time has occurred). The relative displacement (Durm−CT ) is labeled as ∆m and
is illustrated in Figure 5.3.

The worker's initial position (Pos) has to respect some boundaries. The lower bound
is given by the station start, since the products cannot be accessed before the station. A
upper bound is given by the station length minus the cycle time. This upper bound is
achieved when the worker �nishes the operations at the end of the line and returns CT
units, resulting in the interval [0;Len− CT ].

Based on the displacement ∆m of each model and the position Pos of a worker,
the next position Posq is calculated as Posq = max(0,min (Len− CT, Pos+ ∆m)). A
Markov process can be de�ned in which each state is a possible starting worker position
within the interval [0, Len − CT ] and the next position is given by ∆m. A transition
matrix Tr consists of transition probabilities between the multiple states. The entries of
the matrix are the probabilities that a random model has a speci�c ∆m value. In order
to express the matrix in a compact form, Len = Len−CT is used in the de�nition of Tr.
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Figure 5.3: Relative displacement of the worker.

The transition matrix of such a Markov process is expressed by

Tr =

0 · · · j · · · Len



0 P (∆ ≤ 0) · · · P (∆ = j) · · · P (∆ ≥ Len)
...

...
. . .

...
. . .

...

i P (∆ ≤ −i) · · · P (∆ = j − i) · · · P (∆ ≥ Len− i)
...

...
. . .

...
. . .

...

Len P (∆ ≤ −Len) · · · P (∆ = j − Len) · · · P (∆ ≥ 0)

where rows represent the start position of of the worker and columns the worker position
after processing the piece (or the initial position for the next product). The value of ∆
represents the displacement and links both the initial and following state. The entries in
the matrix are the correspondent probabilities that products with a given ∆ are processed
in the line. The matrix assures that the position always lies in the feasible interval, either
by assuming idle time or utility work. The necessary utility work to not exceed the station
boundary for a given model m and position Pos is given by

U(∆m, Pos) = Max(0, Pos+ ∆m − (Len− CT )). (5.6)

The transition matrix Tr can be used to calculate the stationary probabilities wPos
of a worker being in a given position Pos ∈ [0, Len − CT ] by solving the system of
linear equations w = Tr ·w and

∑
Pos∈[0,Len−CT ] wPos = 1 [Cechin and Corso, 2019]. The

stationary probabilities combined with the probability Pm of each model product can then
be used to calculate the expected utility work for a given assignment and station length
using the expression

E
(
C(x1s, ..., x|T |s, Lens)

)
=
∑
m∈M

∑
Pos∈[0,Len−CT ]

Pm · wPos · U(∆m, Pos). (5.7)

5.3 Properties of the total cost function

This section contains the proof of two important properties of the total cost function: the
cost function is i) piece-wise linear and ii) convex for the assumptions presented in the
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problem description. While the station-length cost is linear, the expected utility-work
function is evaluated in this section.

Theorem 1. The expected- utility-work function is piecewise linear in the station length.

Proof. Suppose the same station is analyzed in two di�erent layouts with length n and
n + δ, in which n is a natural number and 0 < δ ≤ 1. Consider that the worker of the
station is in the same starting position i, while the product sequence and all processing
times are identical. The position of the worker lies in either one of the two con�gurations
shown in Fig. 5.4. From an initial position i0, the worker has the same position in both
cases if the right border is not surpassed.

𝟏 𝐿𝑒𝑛𝑔𝑡ℎ

𝑛

𝑛 + δ

𝑃𝑜𝑠 = 𝑖, 𝑖 ∈ 0, 𝑛

𝑖 δ ≤ 1

𝟐 𝐿𝑒𝑛𝑔𝑡ℎ

𝑛

𝑛 + δ

𝑃𝑜𝑠 = 𝑖, 𝑖 ∈ 0, 𝑛

𝑖 δ ≤ 1𝑖 + δ

Figure 5.4: The two possible con�gurations of a station with lengths n and n+δ, for 0 < δ ≤ 1.

A transition of con�guration 1 to con�guration 2 occurs when the �nal position of
the worker would be larger than n. In this case, utility work occurs. As assumed in the
problem description, all processing times have integer values. If a product requires U1 ≥ 1
units of utility work in the station of length n from a line in con�guration 1, the station
with length n + δ requires U1 − δ units of utility work for the same operation.

In con�guration 2, every sequence of products requires exactly the same amount of
utility work, since the distance of the worker position and the end of the station is identical.

When idle time occurs, a transition from con�guration 2 to con�guration 1 happens.
As all processing times are integer, any amount of idle time would result in a transition
to con�guration 1.

Summing up all the e�ects, both layouts do not need utility work if the system stays
in con�guration 1, the same amount of utility work is needed in con�guration 2, and no
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utility work again in the transition from con�guration 2 to 1. In each transition from
con�guration 1 to 2, U1 and U1 − δ units of utility work are needed, respectively.

The probabilities for each transition are identical for both layouts of the station -
independent of the value of δ. Hence, the expected utility work varies linearly with the
value of δ. Therefore, the expected utility-work function is piecewise linear.

Theorem 2. The expected-utility-work function is convex.

Proof. The convexity proof consists of two parts:
i) the expected utility work function decreases with respect to the length.
ii) Un−1 − Un ≥ Un − Un+1, where Un refers to the expected utility work of a station

with length n.
Part i): see proof of Theorem 1 for δ ∈ (0, 1] .
Part ii): Consider three layouts of a station with length n − 1, n, and n + 1 with a

worker at the starting position i0 ∈ [0, n− CT − 1]. For the same sequence of products,
the position of the worker after �nishing the tasks of a product and return CT equivalent
units to the left is given by one of the four con�gurations displayed in Fig. 5.5.

The four possible con�gurations are:

� Con�guration 1: the worker is at the same position i (for i ∈ [0, n−CT − 1]) in all
layouts of the station.

� Con�guration 2: the worker is at position i for the layouts with length n and n+ 1,
while the worker of the layout with length n−1 is at position i−1 (for i ∈ [1, n−CT ]).

� Con�guration 3: the positions of the worker in the layout with length n− 1, n, and
n+ 1 are, respectively, at i− 1, i, i+ 1 (for i ∈ [1, n− CT ])

� Con�guration 4: the worker in the layout with length n − 1 and n are in position
i, while the worker in the layout with length n + 1 is at position i + 1 (for i ∈
[0, n− CT − 1]).

Other con�gurations may be possible at the start of the operation with arbitrary
positions for the three station layouts. During the operation, however, the arbitrary
con�guration will approach con�gurations 1 or 4 if idle time occurs or con�gurations 2 or
3 if utility work occurs. Because of this, only the four presented con�gurations are said
to be stable in a steady-state production.

Figure 5.6 describes all the possible transitions between the stable con�gurations.
If the position of the worker in all cases does not exceed any station boundary, the
con�guration remains unchanged. From con�guration 1, if the position of the worker of
the station with length n − 1 would be n, exactly one unit of utility work occurs. The
resulting position is in con�guration 2. If at least one unit of utility work occurs in stations
of length n − 1 and n, the relative position of the workers must be as in con�guration
3. Finally, when idle time occurs, con�guration 2 transitions to con�guration 1, and
con�guration 3 transitions to con�guration 4 if the station of length n − 1 has exactly
one unit of idle time or to con�guration 1 if more idle time occurs. No other transition is
possible.

The amount of utility work for all possible transitions is described in Table 5.1. Some
transitions result in 0, 1, or an arbitrary amount of utility work. The arbitrary amounts
are described with Uij for the transition of con�guration i to con�guration j.
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Figure 5.5: The four possible position con�gurations after a sequence q of products for stations
with length n− 1, n, and n+ 1.
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Figure 5.6: The possible transitions between the four possible position con�gurations in three
layouts of a station with lengths n− 1, n, and n+ 1.

In order to prove that Un−1 − Un ≥ Un − Un+1, the value of Un−1 + Un+1 − 2 · Un
is calculated for every possible transition. The net amount (Un−1 + Un+1 − 2 · Un) of
the utility work in every transition is displayed in the last column of Table 5.1. Given
probabilities P T

ij of a transition of con�guration i to j, the expression results in
Un−1 + Un+1 − 2 · Un = +1 · P T

12 − 1 · P T
23 + 1 · P T

43 = P T
12 − P T

23 + P T
43.

From Fig. 5.6, it can be observed that con�guration 2 can only be reached from
con�guration 1 (Transition 1 → 2) and con�guration 2. Therefore, the frequency of
transition 1 → 2 is higher or equal to transition 2 → 3, since the transition 2 → 1
is also possible. As the average of the expected processing time of each station must
be lower than or equal to the cycle time, the probability of idle time (P T

21) is non-zero
(assuming that there is at least a model whose processing time is longer than the cycle
time). Therefore, P T

12 > P T
23.

Inequality P T
12 > P T

23 results in P
T
12 − P T

23 + P T
43 > 0, so that Un−1 + Un+1 − 2 · Un > 0

and, consequently, Un−1 − Un > Un − Un+1.
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Table 5.1: Utility work necessary for each transition for three layouts of a station with lengths
n− 1, n, and n+ 1.

Length
n− 1 n n+ 1

Transition Utility work Un−1 + Un+1 − 2 · Un
1→ 1 0 0 0 0
1→ 2 1 0 0 +1
1→ 3 U13 + 1 U13 U13 − 1 0
2→ 1 0 0 0 0
2→ 2 0 0 0 0
2→ 3 U23 U23 U23 − 1 -1
3→ 1 0 0 0 0
3→ 3 U33 U33 U33 0
3→ 4 0 0 0 0
4→ 1 0 0 0 0
4→ 3 U43 + 1 U43 U43 +1
4→ 4 0 0 0 0

For the case in which no model is longer than the cycle time, no utility work is necessary
and Un−1 = Un = Un+1 = 0, which is also convex.

5.4 Solution algorithm

The proposed algorithm for the balancing of assembly lines for random sequences is based
on a Branch-and-Bound algorithm. The structure of the procedure is illustrated in Fig.
5.7. Nodes consist of a set of tasks, whose enumeration is described in section 5.4.1. For
each node, the station length is optimized using an exponential �tting algorithm described
in section 5.4.2. For each combination of task assignment and station length, a Markov
chain (section 5.2) is used to determine the expected utility work and consequently the
assignment cost. The exact algorithm is described in section 5.4.3.

5.4.1 Node enumeration scheme

The search for the best assignment is performed in a search tree, in which nodes represent
feasible assignments of tasks. A solution of the model of section 5.1 is considered feasi-
ble if all tasks are assigned, task assignments respect precedence relations, and stations'
expected processing times do not exceed the cycle time. As only the expected processing
time is relevant for the feasibility, the solution space of the stochastic problem is identi-
cal to a deterministic problem considering the expected processing times. Although the
assessment of the objective function value in the stochastic case is more costly, the enu-
meration of feasible solutions can use known procedures for the feasibility version of the
simple assembly line balancing problem (SALBP-F).

Among the branching schemes for SALBP, the best-performing methods are based on
the station-oriented enumeration schemes [Scholl and Klein, 1997; Sewell and Jacobson,
2012]. In this scheme, each node of the tree consists of a set of tasks assigned to a station.
Each level k of the enumeration tree consists of the nodes of possible assignments to
station k. In the proposed algorithm, the search starts with a root node at level 0 with
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Figure 5.7: Representation of the algorithm structure.

no tasks assigned. The enumeration is performed station-wise along with the stations of
the line.

Algorithm 5.1 is used to enumerate the assignment alternatives of a station for a set
of available tasks L. This set contains the tasks whose predecessors are already assigned
so that their assignments respect the precedence constraints. Algorithm 5.1 performs
a recursive deep-�rst search to enumerate all the possible assignments. The algorithm
is an adaptation of the enumeration heuristic of Ho�mann [1963] and Fleszar and Hindi
[2003]. In their heuristic, only the best assignment of each level is chosen. In the proposed
branch-and-bound, all feasible nodes are enumerated and stored.

During the node exploration, some feasibility rules are checked. The precedence rela-
tions are obeyed in the construction of the set L. Whenever a task is added or removed
to the set of assigned tasks A, set L is updated. That is, elements are added or removed
from L so that all tasks in L can be directly assigned next. The algorithm is initiated in
each level with q = 1 so that the index r starts with the �rst element of set L (L1). Set
L at the root node of the algorithm contains the tasks without predecessors.

The second restriction is the expected processing time, which must be less than or
equal to the cycle time in each station. This restriction is equivalent to the balancing
of a single model with the average processing times and is implemented in the if-clause
of line 3 in Algorithm 5.1. In the enumeration process, it is important to track the idle
time of the assignments. The idle time for the average model of a station is the di�erence
between the cycle time and the average processing time in the station. For the whole line,
the idle time of the average model is given by

CT · |S| −
∑
t∈T

Duravgt .

This quantity is distributed among the stations since not all assignments �ll up the station
up to the cycle time. In the enumeration process, assignments that use more than the
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available idle time are infeasible, since it is impossible to assign the remaining tasks of
the average model to the remaining stations. Therefore, at the generation of a node, the
remaining idle time is used as a feasibility condition. This condition is checked in the
if-clause of line 6.

For the deterministic SALBP, Jackson [1956] presented the maximum load rule for sta-
tion assignments. This dominance rule states that assignments with non-maximal station
load are dominated by maximum loads for the SALBP-1 variant. In the stochastic case,
this rule does not apply, because the expected processing time may require much more
utility work than assignments with positive expected idle time. Therefore, Algorithm 5.1
uses a proposed weaker version of this dominance rule: the maximum upper load rule.
This rule considers the longest processing times of each task t (Durmaxt ) and does not
enumerate assignments whose processing time in the worst-case scenario is small enough
that another task could be added without causing utility work. This rule is implemented
in the if-clause of line 7. This restriction is waived for the last station of the enumeration
process since set L is empty.

Algorithm 5.1: OnePackingSearch(q, IdleT ime, L,A)

for r: q to |L| do
i = Lr
if
∑

t∈ADur
avg
t +Duravgi ≤ CT then

A = A ∪ {i}
Update L
if CT −

∑
t∈ADur

avg
t ≥ IdleT ime then

if
∑

t∈ADur
max
t +mink∈[i,|L|](Dur

max(Lk)) > CT then
RemainingIdleT ime = IdleT ime− (CT −

∑
t∈ADur

avg
t )

CreateNode(A,RemainingIdleT ime, L \ A)
OnePackingSearch(r + 1, IdleT ime, L,A)
A = A \ {i}
Update L

In Algorithm 5.1, function `OnePackingSearch' is responsible for the enumeration of
the assignments. For the feasible station loads, function `CreateNode' stores the given
assignment, the remaining idle time for the next stations, and the list of tasks that may
be assigned next (L \ A).

5.4.2 Length optimization

Each assignment or node of the enumeration tree has a cost compounded by the length
cost and the expected utility work cost of this station. The expected utility work is
calculated by a Markov chain presented in Section 5.2 and depends on the station length,
as illustrated in an example in Figure 5.8. The expected utility-work cost is a convex
and piece-wise linear non increasing function (proof in Section 5.3) while the line length
cost is a linear function. The total cost function, as in the objective function of the
model (expression 5.1), is the weighted sum of both costs with weights c1 and c2 which
represent monetary units per length unit and monetary units per time unit, respectively.
An example of the total cost curve is given in Fig. 5.9.

In order to obtain the minimal cost of a given assignment, the optimal length of the
station must be determined. In this section, a one-variable optimization algorithm is
presented. The processing-time data is considered integer (and as a consequence all ∆-
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Figure 5.8: Expected utility work with respect to station length for an example. Although the
curve resembles an exponential curve, it is a piecewise linear function.
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Figure 5.9: Expected utility work cost, line length cost, and expected total cost with respect to
station length for an example.

values are integer) so that the optimal length is also integer since the total cost function
is piecewise linear with integer nodes. The optimal station length can be obtained by gen-
erating the corresponding Markov chain for each station length and choosing the minimal
cost value. In order not to enumerate all possible station lengths, a search algorithm is
proposed.

The structure of the one-variable optimization is shown in Algorithm 4. As the total
cost function is convex, but no information of the derivatives is available, the procedure
performs the evaluation of a length value per iteration and uses the information of other
three known length values to determine the new search interval. These three values
correspond to a lower bound, an upper bound, and a third known point, which is called
Pivot. The algorithm structure is based on search procedures such as the Fibonacci Search
[Ferguson, 1960] or the Golden Section Search [Kiefer, 1953]. In contrast to methods
for arbitrary curves, the proposed algorithm uses the information of the shape of the
curve to select the new evaluated point. As the expected utility-work curve resembles an
exponential shape, an exponential �tting is used to approximate the optimal solution and
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accelerate the search procedure. Algorithm 4 also contains a correcting function for the
cases in which the exponential �tting provides approximations outside the search interval.
Finally, the search interval is updated based on the new evaluated search length.

Algorithm 5.2: LengthOptIteration(A,LB, P ivot, UB, TCLB, TCPivot, TCUB)

/* Approximate total cost curve and calculate next point.

*/
Sol = ExponentialFitting(LB,P ivot, UB, TCLB, TCPivot, TCUB)
/* Assure Sol is within known bounds. */
CorrectWithinBounds(Sol, LB, P ivot, UB)
/* Calculate the expected utility work. */
TCSol = c1 · Sol + c2· MarkovChain(A, Sol)
/* Uptade bounds. */
UpdateBounds(Sol, LB, P ivot, UB, TCSol, TCLB, TCPivot, TCUB)

In the �ExponentialFitting" function (Ẽ(Len)), the known points (Pivot, LB, and
UB) and their respective total-costs (TCPivot, TCLB, and TCUB) are used to approximate
the total-cost curve by a compound exponential and linear curve in form

Ẽ(Len) = c1 · Len+ c2 · a · e−b·Len.

Among many forms to �t the curve for the given data, the version of the algorithm that
performed best in the empirical tests uses only two points (P1 and P2) for the �tting.
These points are the pair of length points among the three explored in the iteration that
are closer to each other. Therefore, one of the points is Pivot and the second is either
the lower bound (LB) or upper bound (UB), whichever has the lowest distance to Pivot.
The two-point �tting results in parameters

b = ln

(
TCP1 − c1 · P1

TCP2 − c1 · P2

)
/(P2 − P1)

and

a =
(TCP1 − c1 · P1) · eb·P1

c2

.

The optimal solution can then be found by

dẼ(Len)

dLen
= 0

and is given by
Sol = (ln(c2/c1) + ln a+ ln b) /b.

Although the �tting of the utility work with an exponential curve provides a good
approximation, the algorithm does not always converge to the optimal solution since the
curve is not an exponential function. Therefore, the �CorrectWithinBounds� function is
used to make sure the new test point is within the search interval. This function does
not alter the value of Sol if its value lays within the interval [LB,UB] and is di�erent
from Pivot. In the case of a bound violation (either Sol > UB or Sol < LB), Sol is
corrected to the middle point of Pivot and the violated bound rounded down. If the
selected interval is of length 1 (for instance Pivot = LB + 1), Sol is corrected as the
middle point of the other interval (in the example, the middle point between Pivot and
UB). Finally, if the approximation gives Sol = Pivot, then Sol is set to the middle point
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Figure 5.10: Illustrated cases for the bounds update function.

of the larger of the intervals [LB,P ivot] or [Pivot, UB]. This way, Sol is a non-evaluated
point within the search interval at the beginning of each iteration. The calculation of the
total cost of Sol uses the �MarkovChain� function described in Sec. 5.2.

The remaining step in the procedure is given by the function �UpdateBounds�. In this
procedure, the search interval is updated based on the evaluation of the new point Sol.
The procedure is illustrated in Fig. 5.10. From the four known points, three are stored for
the next iteration. Either the lower or upper bound is updated with one of the internal
points (Sol or Pivot). The case in which the left bound is updated is shown in Fig. 5.10a,
while the upper bound update is depicted in Fig. 5.10b.

Algorithm 4 requires as initialization the value of three points (LB,UB, and Pivot).
As a lower bound for the length, the cycle time (CT ) equivalent is used, while the �rst
Pivot-value is CT + 1. The utility work evaluation for Len = CT requires only the
weighted sum of the processing times longer than the cycle time since there is no length
�exibility. For Len = CT + 1, the corresponding Markov chain has only two states
(Position 0 and 1) and is also fast to calculate. An initial upper bound for the length is
given by

UB =

⌊
min (TCLB, TCPivot)

c1

⌋
.

This bound exhibits the same length cost as the better total cost of the LB or Pivot
solution. As utility-work costs are not considered, UB must be an upper bound for the
length of the station. To avoid calculating a large Markov chain, TCUB is initialized with
an in�nite value, and UB is not used for the exponential �tting until an upper bound
with a �nite cost is calculated in the execution of the algorithm.

5.4.3 Iterative computation of nodes

With the node enumeration (Subsection 5.4.1) and node evaluation (Subsection 5.4.2)
procedures de�ned, the last piece of the solution procedure is the search strategy.

Empirical tests show that the computational time required to evaluate a node is much
larger than the time required to compute the feasibility of child nodes in the enumeration
procedure. This is very unfortunate in the case of paths with feasible assignments for
stations at the beginning of the line and infeasible nodes in deeper levels of the search
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tree. Therefore, the proposed search procedure generates the search tree node before the
evaluation of the nodes.

Another drawback of the procedure is the lack of known lower bounds for a given
assignment before the evaluation of the node. Since the utility work is the result of a
Markov Process and length is also optimized for each node, it is di�cult to infer a proper
lower bound for the total cost just based on the balancing variables. If, however, a feasible
interval for the optimal length [LB,UB] for a given assignment is known, a lower bound
can be calculated by

TCNode ≥ c1 · LB + (TCUB − c1 · UB).

A valid lower bound is given by the length cost of the LB and the utility work cost of the
UB (that is, total cost minus length cost). This lower bound is justi�ed by the fact that
length cost increases in length, while utility work cost decreases for increments of lengths.

Along with the node's lower bound on the total cost, a lower bound for the line cost
can be de�ned for each node. The line cost lower bound evaluated in a node is the shortest
path from the root node to a leaf node including the evaluated node. The cost lower bound
of each node is used as a distance measure for the computation of the shortest path. In
this chapter, a node lower bound (or upper bound) is shortened by `Node LB (or UB)',
and a line lower bound is denoted by `Line LB'.

Based on the problem characteristics and the proposed lower bound on total cost, the
proposed algorithm employs an iterative exploration of nodes. That is, the nodes are not
solved until convergence initially. The algorithm loops between the feasible nodes and
calculates one iteration of the `LengthOptIteration' at a time for each node. The new
interval is used to update lower bounds and potentially prune nodes in the process.

The algorithm is outlined in Figure 5.11. The procedure is described in 12 steps:

1. Load input data: cycle time, precedence relations, processing times of options, and
probabilities of options.

2. Enumerate nodes: described in Subsection 5.4.1.

3. Set a path based on the cost approximation: to provide an upper bound, one path is
selected heuristically. The �rst iteration of `LengthOptIteration' (Subsection 5.4.3)
is calculated. The result of the �rst exponential �tting is used as an approximation
for the total cost. The path with the lowest approximated cost is selected as the
�rst solution.

4. Solve nodes in the path: the nodes on the initial path are solved to convergence.

5. Line UB: the sum of the cost of the solved nodes in the path provides an upper
bound on the line cost.

6. While nodes in the tree: The main loop of the procedure. The iterative exploration
of nodes is performed until all nodes are pruned.

7. Select node: a node is selected for exploration. In the implementation, the nodes
with the lowest line lower bound are selected. In computers with multiple cores,
more than one node may be selected at the same time, since their computations are
independent.
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8. LengthOptIteration: an iteration of the one-variable optimization is performed for
the selected node.

9. Node LB: actualize the cost lower bound of the node.

10. If clause: decides whether the node is solved. If the search interval [LB,UB] has
unexplored lengths, go directly to 11. If the one-variable search is completed, the
node upper bound on cost is updated before starting step 11.

11. Update Tree UB/LB: new bounds on the selected node are propagated to the line
cost bounds of parents and child nodes.

12. Remove nodes with LB ≥ UB: if a newly actualized line cost lower bound is greater
than or equal to the line cost upper bound for any node, this node is pruned. After
the pruning, go back to step 6.

5.5 Tests and results

5.5.1 Dataset

For the balancing of assembly lines under random sequences, a dataset is proposed based
on the SALBP instances provided by Scholl [1993]. The selection of Scholl's dataset
instead of the newer Otto et al. [2013] dataset is justi�ed based on a larger variety of
instance size. The structure dataset of Otto et al. [2013] contains instances with 20, 50,
100, and 1000 tasks. In preliminary tests, instances with 20 instances are easy to solve
and several of the instances with 50 tasks are not solvable due to memory requirements
using the proposed algorithm. Therefore, the instances from Scholl [1993] ranging from 8
to 297 tasks are used to generate a dataset for the problem.

For this problem, the tasks are modeled as options that can be added to the product.
For the generated instances, each one of the tasks of an SALBP instance is generated
randomly with 1, 2, or 3 options with the same probability. If a task contains 2 or more
options, the second option has a 20% chance of having no processing time, that is, the
option is not built into the product. For the other cases, a random integer value between
50% and 150% of the processing time of the SALBP task is drawn from a uniform dis-
tribution. For the relative probabilities of each option being purchased, random uniform
values for each option are generated. The random values are then divided by their sum
and rounded to decimal places so that the sum of the relative probabilities is always one.

The instances of Scholl [1993] with more than 20 tasks are used to generate the in-
stances for the presented problem. The instances are available for download at https://
celso-sikora.com/publication-list or at https://www.bwl.uni-hamburg.
de/or/team/celso-sikora.html. Although instances up to 297 tasks are gener-
ated and made available in the dataset, the largest instance solved by the proposed method
has 53 tasks. The name of the instances considered for the result sections, the number
of tasks, and the number of stations are summarized in Table 5.2. Out of a total of 272
instances generated for the dataset, 46 are solvable on a computer with an Intel i5 6500
processor at speed 3.20 GHz and 8 GB of RAM and an implementation of Visual Basic
2013. For each instance type (column Instance name), multiple instances using di�erent
numbers of stations and consequently di�erent values of cycle time are generated. The

https://celso-sikora.com/publication-list
https://celso-sikora.com/publication-list
https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html
https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html
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generation of the options and processing times are identical within an instance type. In
Table 5.2, the interval used to generate the number of stations is given. Furthermore, the
last column of the table shows the number of possible products an assembly line could
produce considering the combination of all available options.

Table 5.2: Summary of the instances of the dataset solved by the proposed method.

Instance name No. tasks No. stations No. of combinations

Buxey 29 7 - 13 3.02 ·107

Gunther 35 6 - 9 3.92 ·1010

Hahn 53 3 - 10 1.59 ·1012

Heskia 28 3 - 8 5.97 ·106

Lutz1 32 8 - 10 1.45 ·109

Mitchell 21 3 - 8 62208

Roszieg 25 4 - 10 2.52 ·106

Sawyer 30 7 - 11 2.69 ·107

Among the precedence diagram, options' processing time, their probabilities, and the
number of stations, a cycle time is also de�ned for each instance. Both the number of
stations and the cycle time are �xed so that the assembly line costs are based on the
physical line length and the expected utility work. If either the number of workers or
the cycle time is not �xed, their e�ect must also be accounted for in the cost function,
generating a di�erent class of problem. Every station must have an expected load less than
or equal to the cycle time, otherwise, the station will surely be overloaded. Therefore,
every solution for the problem must also be feasible in terms of cycle time considering the
expected processing times of each task. In a preprocessing phase, all instances are solved
as SALBP instances using the expected processing time of each task using the algorithm
SALOME [Scholl and Klein, 1997]. The optimal solution or the best answer after 1,000
seconds is used in the calculation of the cycle time. The de�nition of the cycle time (CT)
is given as

CT = Max (1.05 · CTLB; 1.02 · CT avgUB )

in which CTLB is a lower bound on the cycle time, given by

CTLB =

∑
t∈ T Dur

avg
t

|S|

and CT avgUB is the upper bound of the instance considering the expected processing times
using SALOME. The selected cycle time for the instance under random sequences is
slightly higher than the deterministic optimal. This way, the instance is de�ned within a
reasonable production rate (at most 5% above the lower bound or 2% above a known upper
bound, whichever is larger) but also allows �exibility to consider non-optimal deterministic
answers. Without this extra �exibility, the deterministic solution may be the only feasible
solution for the problem.

An instance also requires the speci�cation of the line-length and utility-work cost
coe�cients: c1 and c2. As described in the problem de�nition, the speed of the conveyor
is set to 1, so that distance and time are equivalent. For the instances, c1 is considered to



Chapter 5. Balancing under no sequencing control 89

be 1 monetary unit per time unit. The length cost is due to the cost of acquisition and
maintenance of the length of the conveyor system as well as the opportunity costs of the
space used in the factory. The line-length cost is considered linear on the length of the
stations and is calculated as the sum of all station costs. c2 is equivalent to the price of
a unit of time of utility work. The utility work cost calculation is based on the expected
amount of utility work. The values of c1 and c2 are dependent on the physical layout,
opportunity costs, wages, etc. For the dataset, the cost parameters are selected so that
the resulting stations have a reasonable length. In preliminary tests values between 1 and
100 for c2 generated. The optimal length depends on the selected cost coe�cients since
there is a trade-o� between the station length and the expected utility work. Therefore, a
set of representative values for the cost coe�cients are selected for the dataset. In total,
every instance of the dataset is solved with c1 = 1 and c2 = 5, 10, 20, and 50. Smaller
values of c2 result in instances in which all stations lengths are equal to the lower bound.
A value of c2 = 50 already results in very small amounts of expected utility work, so that
the selected range is considered representative for all possible scenarios. In total, the 46
base instances are solved with 4 di�erent cost parameter combinations, resulting in 184
instances.

5.5.2 Results

The results containing the optimal value of the objective function, the line length (sum
of all station lengths), the expected utility work, and the solution time are displayed in
Tables 5.3, 5.5, and 5.6, respectively.

In Table 5.3, the total cost for each instance is displayed along with the optimal line
length. For each instance type, the values of the number of stations and the corresponding
cycle time are shown in each row of the table. As the model requires that the length of
each station is at least the cycle time, the minimal length of the line is shown in column
NS · CT. As c1 = 1 for the dataset, the value of NS · CT is a lower bound for the total
cost. The extra cost above this lower bound is divided between the cost of the expected
utility work and any length unit added to any station. In Table 5.3 the results of each
instance for all variations of the expected utility work cost parameter (c2) are displayed
side by side for each instance. The values are contained in columns c2 = 5, c2 = 10,
c2 = 20, and c2 = 50. As expected, the total cost increases with larger values for the cost
parameter c2. Furthermore, the more costly the utility work is, the longer the stations
are planned. Note, however, that the e�ect of the di�erent cost parameters di�ers from
instance to instance. The setting c2 = 5 results in almost no extra length for instances
such as Buxey and Mitchell but yields di�erences of 1% to 4% in instances such as Heskia.
For the most costly parameter (c2 = 50), the optimal con�guration exhibits up to 38%
increase of the line length (Instance Heskia, 8 stations). As the increase of the line length
is made in a discrete fashion (the length is assumed to be integer), the optimal length of
a station is determined when the reduction of the expected utility work cost is less than
the cost of one unit of length.

It is noteworthy, that the balancing solution for an instance is not necessarily the same
for each cost parameter. Table 5.4 contains the information on the number of instances
with di�erent cost coe�cients that have the same assignment solution. Out of the 46
instances, 21 instances have the same optimal balancing solution for every tested cost
parameter. The optimal length varies according to the cost parameter. For the other 25
instances, not only the length of the line is di�erent, but also the optimal task assignment
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Table 5.3: Results of the optimal cost and length for the dataset.

Instance NS NS·CT c2 = 5 c2 = 10 c2 = 20 c2 = 50

Len Cost Len Cost Len Cost Len Cost

Buxey

7 336 336 339.9 338 342.8 342 345.9 346 350.1

8 336 336 342.3 341 347.3 346 351.4 350 357.1

9 342 342 343.1 342 344.1 343 346.2 346 347.4

10 340 340 343.9 342 347 346 348.3 348 351.4

11 341 343 348.7 346 353.5 353 358.5 357 364.9

12 348 348 351.9 352 354.2 353 356.1 356 358.8

13 364 364 364 364 364 364 364 364 364

Gunther

6 462 475 526.1 504 566 546 607.5 601 665.6

7 448 460 516.5 498 554.2 534 595.5 587 654.5

8 448 458 518.4 499 560.5 539 602.8 595 665.7

9 486 486 516 517 539.2 534 555.3 549 576.7

Hahn

3 13977 14030 14849.7 14664 15375.7 15069 15960.9 15832 16835.6

4 14264 14366 14946.8 14739 15374.4 15184 15831.9 15705 16483.1

5 13720 13852 14497.3 14202 14973.6 14764 15469.3 15349 16130.1

6 14046 14640 15624.4 15092 16418.1 15962 17407.5 17111 18930.7

7 14861 15369 16041.8 15603 16633.7 16238 17399.5 17111 18635.9

8 14616 14692 15271.7 15092 15688.2 15444 16090.7 16074 16603

9 14985 15257 15691.4 15560 16036.5 15960 16350.6 16270 16768.4

10 15880 16306 16826.7 16670 17262.4 17158 17772.7 17646 18497.2

Heskia

3 981 999 1097.5 1058 1168.7 1112 1256.1 1221 1406.8

4 984 997 1112.7 1070 1193.9 1134 1288.3 1255 1449.2

5 985 996 1113.5 1070 1196.2 1137 1291.4 1255 1453.8

6 984 999 1127.1 1077 1216.6 1142 1326.7 1279 1521.9

7 987 1014 1141 1090 1235.3 1167 1346.3 1314 1541.8

8 984 1027 1177.2 1125 1289.6 1195 1430.9 1362 1681.5

Lutz1

8 13944 14101 14884.5 14568 15482.9 15171 16172.2 16089 17138.9

9 14355 14438 15010.2 14813 15413.8 15265 15835.2 15839 16377.1

10 14640 14675 15124.3 14955 15487.2 15232 15876.6 15860 16527.6

Mitchell

3 108 108 112.4 111 115.8 115 119.4 119 123.8

4 108 108 114.5 112 119.6 119 124.5 122 130

5 110 110 115.7 114 120 119 124 123 128.9

6 114 114 117.6 117 120.4 119 122.8 122 125.6

7 112 112 118.8 118 122.4 120 125.5 126 130.2

8 120 121 125.8 124 129.2 128 132.6 132 137.2

Roszieg

4 116 117 121.4 119 125.2 124 128.7 127 132.9

5 115 115 122.7 121 127.5 126 132.2 132 138.7

6 120 120 123.4 121 126.3 125 129 128 132.9

7 126 127 129.4 128 131.3 131 133.4 133 135.9

8 128 128 129.4 129 130.1 130 131 130 132.5

9 117 119 126.6 122 132.5 129 138.8 136 149.3

10 120 122 130.7 127 136.5 134 142.9 141 152.5

Sawyer

7 329 330 338.5 335 344.8 343 350.7 350 358.1

8 328 329 341.5 339 349.4 344 357.1 356 368.7

9 333 336 343.8 339 349.9 348 355.6 355 363.3

10 330 330 343.2 340 350.2 344 358.5 356 368.8

11 341 343 350.9 348 356.1 352 362.6 362 371.4

Average 3809 3986 3916 4119.7 4050 4269.7 4235 4491.7
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itself. The optimal solutions of the instances are compared to each other and the number
of identical assignments is displayed in Table 5.4. According to the values of Table 5.4,
the number of identical optimal solutions is correlated with the di�erence of the cost
parameters. For instance, 37 instances have the same optimal solution when solved for c2

= 10 and c2 = 20, while only 21 instances have identical assignments when considering
the pair c2 = 5 and c2 = 50.

Table 5.4: Number of instances with the same assignment for di�erent combinations of the
cost parameters. For example, 31 of the 46 instances with c2 = 5 present the same
balancing solution as for the instances with c2 = 10.

c2 10 20 50

5 31 25 21

10 37 29

20 33

The relative values of the expected utility work are described in Table 5.5. The
expected utility work values are presented in percentage of the cycle time. A value of
5%, for instance, means that it is expected that the line would require at least one utility
worker 5% of the time during production. For the generated instances, the expected
utility-work time varies from 0% (Buxey, 13 stations) to 22.43% (Heskia, 8 stations). The
optimal value of the expected utility work strongly varies based on the cost parameter
c2. On average, the dataset requires 7.21% utility work time for the lowest cost setting
(c2 = 5) and only 1.01% for the highest value of c2. In the problem formulation, the utility-
work cost is based on the expected use of the utility worker. This is just a proxy for the
utility-work cost since the number of utility workers is discrete. These workers, however,
are shared between stations or even multiple assembly lines, so that only a proportion of
their time can be accounted for as cost. Furthermore, the expected occupancy of a utility
worker must be much less than 100%, since their necessity is not evenly spread through
the production time; they need to move to the required workstation; there may be more
than one station requiring utility work at the same time.

The trade-o� between line length and expected utility work can be easily observed
in the average values of Table 5.5. The extension of the line from an average of 3,809
time units (c2 = 5) to 3,916 time units (c2 = 10) reduces the expected utility work
from an average of 7.21% to 3.91%. Further line extensions result in smaller e�ects on
the expected utility-work average, indicating diminishing returns. Note that although
the expected utility-work values seem small for the used cost parameters, the instances
contain from 3 to 11 stations. Longer lines (20 or more stations) would require more
utility work for the same values of the cost parameter.

The cost parameter has a strong in�uence on the solution time of the instances, as
described in Table 5.6. The proposed algorithm requires more time for larger values of
c2. The explanation of this clear trend lies in the average length of the stations. As
the Markov chain matrices are built based on the extra length (di�erence of the station
length and the cycle time), longer stations produce larger matrices. Therefore, larger cost
parameters require the solution of larger linear systems, requiring more solution time on
average. The di�erence can be extreme as in the instance Hahn with 6 stations, for which
the optimal solution for c2 = 5 is obtained in 2.3 seconds, while 614.7 seconds are required
for c2 = 50. On average, the solution times vary from 90.3 to 419.4 seconds. It is worthy
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Table 5.5: Optimal length and percentage of utility work relative to the cycle time.

Instance NS CT
c2 = 5 c2 = 10 c2 = 20 c2 = 50

Len %UW Len %UW Len %UW Len %UW

Buxey

7 48 336 1.62 338 0.99 342 0.40 346 0.17
8 42 336 2.99 341 1.50 346 0.64 350 0.34
9 38 342 0.56 342 0.56 343 0.42 346 0.07
10 34 340 2.27 342 1.46 346 0.34 348 0.20
11 31 343 3.66 346 2.42 353 0.89 357 0.51
12 29 348 2.68 352 0.75 353 0.53 356 0.19
13 28 364 0 364 0 364 0 364 0

Gunther

6 77 475 13.28 504 8.05 546 3.99 601 1.68
7 64 460 17.64 498 8.78 534 4.80 587 2.11
8 56 458 21.57 499 10.98 539 5.70 595 2.53
9 54 486 11.12 517 4.12 534 1.98 549 1.03

Hahn

3 4659 14030 3.52 14664 1.53 15069 0.96 15832 0.43
4 3566 14366 3.26 14739 1.78 15184 0.91 15705 0.44
5 2744 13852 4.70 14202 2.81 14764 1.29 15349 0.57
6 2341 14640 8.41 15092 5.66 15962 3.09 17111 1.55
7 2123 15369 6.34 15603 4.85 16238 2.74 17111 1.44
8 1827 14692 6.35 15092 3.26 15444 1.77 16074 0.58
9 1665 15257 5.22 15560 2.86 15960 1.17 16270 0.60
10 1588 16306 6.56 16670 3.73 17158 1.94 17646 1.07

Heskia

3 327 999 6.02 1058 3.39 1112 2.20 1221 1.14
4 246 997 9.40 1070 5.04 1134 3.14 1255 1.58
5 197 996 11.93 1070 6.41 1137 3.92 1255 2.02
6 164 999 15.63 1077 8.51 1142 5.63 1279 2.96
7 141 1014 18.01 1090 10.31 1167 6.36 1314 3.23
8 123 1027 24.43 1125 13.38 1195 9.59 1362 5.19

Lutz1
8 1743 14101 8.99 14568 5.25 15171 2.87 16089 1.20
9 1595 14438 7.17 14813 3.77 15265 1.79 15839 0.67
10 1464 14675 6.14 14955 3.64 15232 2.20 15860 0.91

Mitchell

3 36 108 2.44 111 1.34 115 0.61 119 0.27
4 27 108 4.85 112 2.82 119 1.02 122 0.59
5 22 110 5.20 114 2.75 119 1.14 123 0.53
6 19 114 3.83 117 1.77 119 1.00 122 0.37
7 16 112 8.46 118 2.78 120 1.73 126 0.53
8 15 121 6.42 124 3.45 128 1.55 132 0.69

Roszieg

4 29 117 3.05 119 2.13 124 0.82 127 0.41
5 23 115 6.73 121 2.82 126 1.34 132 0.59
6 20 120 3.44 121 2.67 125 1.00 128 0.49
7 18 127 2.63 128 1.85 131 0.68 133 0.33
8 16 128 1.80 129 0.67 130 0.31 130 0.31
9 13 119 11.69 122 8.08 129 3.76 136 2.05
10 12 122 14.43 127 7.89 134 3.71 141 1.92

Sawyer

7 47 330 3.62 335 2.08 343 0.82 350 0.34
8 41 329 6.08 339 2.53 344 1.59 356 0.62
9 37 336 4.22 339 2.95 348 1.03 355 0.45
10 33 330 8.01 340 3.09 344 2.20 356 0.77
11 31 343 5.09 348 2.61 352 1.71 362 0.61

Average 3809 7.21 3916 3.91 4050 2.11 4235 1.01
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to note, however, that several of the instances are very easy to solve, requiring much less
than one second. Some instances of Hahn, which have long cycle times, however, require
up to 8,195.4 seconds.
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Table 5.6: Comparison of the solution time of the dataset with respect to the optimal length.

Instance NS CT
c2 = 5 c2 = 10 c2 = 20 c2 = 50

Len Time Len Time Len Time Len Time

Buxey

7 48 336 0.3 338 0.4 342 0.4 346 0.3
8 42 336 0.4 341 0.4 346 0.4 350 0.3
9 38 342 0.4 342 0.4 343 0.6 346 0.4
10 34 340 0.4 342 0.5 346 0.5 348 0.4
11 31 343 0.3 346 0.3 353 0.3 357 0.3
12 29 348 0.3 352 0.3 353 0.4 356 0.3
13 28 364 0.4 364 0.4 364 0.4 364 0.4

Gunther

6 77 475 5.0 504 5.8 546 7.8 601 8.9
7 64 460 1.9 498 2.4 534 3.2 587 5.3
8 56 458 1.3 499 1.8 539 2.3 595 5.0
9 54 486 3.1 517 3.4 534 3.5 549 4.8

Hahn

3 4659 14030 2.9 14664 66.0 15069 74.7 15832 155.5
4 3566 14366 3025.2 14739 2754 15184 4884.6 15705 8195.4
5 2744 13852 314.1 14202 974.6 14764 1453.5 15349 4320.3
6 2341 14640 2.3 15092 9.7 15962 79.2 17111 614.7
7 2123 15369 57.9 15603 111.6 16238 182.6 17111 701.0
8 1827 14692 49.4 15092 74.5 15444 119.8 16074 350.5
9 1665 15257 48.8 15560 102.8 15960 69.8 16270 114.3
10 1588 16306 15.0 16670 22.8 17158 29.9 17646 70.7

Heskia

3 327 999 298.1 1058 437.3 1112 798.1 1221 2128.9
4 246 997 149.3 1070 214.4 1134 438.2 1255 1503.5
5 197 996 98.5 1070 115.9 1137 192.2 1255 629.8
6 164 999 39.8 1077 48.5 1142 63.9 1279 216.4
7 141 1014 26.7 1090 34.2 1167 48.0 1314 142.7
8 123 1027 3.4 1125 3.9 1195 4.4 1362 8.4

Lutz1
8 1743 14101 0.027 14568 0.7 15171 6.5 16089 34.7
9 1595 14438 0.041 14813 0.4 15265 2.5 15839 14.5
10 1464 14675 0.05 14955 1.1 15232 10.1 15860 57.3

Mitchell

3 36 108 0.010 111 0.012 115 0.014 119 0.017
4 27 108 0.003 112 0.003 119 0.004 122 0.004
5 22 110 0.002 114 0.002 119 0.002 123 0.002
6 19 114 0.006 117 0.009 119 0.008 122 0.008
7 16 112 0.005 118 0.006 120 0.006 126 0.007
8 15 121 0.002 124 0.002 128 0.003 132 0.002

Roszieg

4 29 117 0.016 119 0.019 124 0.020 127 0.019
5 23 115 0.008 121 0.009 126 0.021 132 0.010
6 20 120 0.006 121 0.008 125 0.011 128 0.007
7 18 127 0.024 128 0.025 131 0.060 133 0.026
8 16 128 0.017 129 0.018 130 0.026 130 0.018
9 13 119 0.002 122 0.002 129 0.002 136 0.002
10 12 122 0.008 127 0.010 134 0.009 141 0.011

Sawyer

7 47 330 2.3 335 2.2 343 2.3 350 2.1
8 41 329 1.8 339 1.9 344 2.0 356 2.1
9 37 336 1.8 339 1.9 348 1.8 355 1.6
10 33 330 1.5 340 1.4 344 1.4 356 1.4
11 31 343 1.7 348 1.7 352 1.7 362 1.6

Average 3809 90.3 3916 108.6 4050 184.5 4235 419.4



Chapter 6

Controlling production sequences using

bu�ers

In the previous two chapters, both extreme assumptions on sequence control are dealt with
for the balancing problem of mixed-model assembly lines. In Chapter 4, it is assumed that
the sequencing of the models can be entirely controlled by the assembly line planner or
operator. At the other end of the spectrum, no control over the sequencing is assumed in
Chapter 5 so that the order of the produced pieces is completely random. In this chapter,
an intermediate con�guration is modeled, in which the planner has limited control over
the sequence.

The boundary conditions and the level of control are described in the problem de-
scription section. For this problem, a simulation model, heuristic rules, and improvement
procedures are introduced. This chapter presents the problem and initial results of the
proposed improvement procedures. The project presented in this chapter is a cooperation
with Lübben and Pries.

6.1 Problem description

The problem developed in this chapter consists of a constrained sequencing of the models
produced in an automotive assembly line. As described in Chapter 2, the production
sequence depends on di�erent departments of a factory. The sales, marketing, production,
and painting departments have di�erent objective functions for a problem that is very
interrelated between all these �elds [Gagné et al., 2006]. The intersection of the di�erent
production sections is generally implemented with bu�ers. Such bu�ers provide some
protection against small disruptions so that the whole plant is not a�ected. Furthermore,
small sequence changes can be performed or restored in some bu�er con�gurations.

Most of the literature on sequencing deals either with the painting or the assembly
processes [Gagné et al., 2006; Boysen et al., 2009c]. Therefore, the bu�er at the intersec-
tion of these two phases is selected as the focus of this chapter. Using the bu�er capacity,
a given sequence of products can be altered by a resequencing procedure.

The proposed problem consists of the optimization of the bu�er operation. The space
inside the bu�ers can be used to store products and alter the production sequence locally.
This way, a sequencing more amenable for the �nal assembly can be achieved. Moreover,
the input sequence of the bu�er is considered to be stochastic. The sequencing decision
of which product to send to the �nal assembly line is then performed under partial infor-
mation. Only the state of the assembly line and the contents of the bu�er are known so

95
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that the problem is online, i.e., it is solved repeatedly for each cycle.

6.1.1 Problem classi�cation and system description

For this problem, it is assumed that the product sequence is independent of the assembly
line objectives and can therefore be considered random with respect to the processing
times. This assumption relies on the multi-objective nature of the sequencing problem,
since several decision makers can in�uence the decision. Furthermore, the input of the
bu�er takes the products coming from the paint shop. According to Boysen et al. [2012],
the paint shop is the least reliable part of the system, since small imperfections may
require retouch or even a complete repainting of the product. Therefore, even planned
sequences are randomly disturbed during the painting process.

Along with a random sequence of products, the bu�er and the assembly line are
considered to be given. The bu�er has a given size, while the assignment of the tasks to
the stations is already prede�ned. The optimization variable of this problem setting is
the sequence of products that are sent to the assembly line. Based on the input sequence
of the bu�er and its capacity, the production sequence can be modi�ed in a resequencing
process.

The resequencing problem has been surveyed by Boysen et al. [2012], who propose a
classi�cation for this class of problem. The authors provide �ve classi�cation criteria: the
resequencing object, the resequencing objective, the solution approach, the planning hori-
zon, and the resequencing trigger. The term resequencing object pertains to the question
whether the products are resequenced physically or virtually. A virtual reschedule consists
in reassigning the product to a di�erent customer order, without a physical resequencing
of the products [Boysen et al., 2012]. The physical resequencing con�guration is further
classi�ed based on the bu�er type. The second criterion is the resequencing objective,
which is described as sequence restoration, mixed-model sequencing, car sequencing, level
scheduling, and paint batching [Boysen et al., 2012]. For the restoration objective, the
bu�er is used to mitigate the errors in the process and to return the sequence to the pre-
vious original plan. The mixed-model sequencing takes into account the processing time
and aims at the minimization of operational costs such as utility work, line stoppage,
rework, etc. The car sequencing objective relates to sequencing rules in form H:N (at
most H products of a given model can be present in a sequence of N vehicles). The level
scheduling objective is used for the part storage and usage in the workstations. Finally,
the paint batching optimizes the sequencing for the paint shop, for which set-up times
or costs for di�erent colors are assumed. The solution approach is the third criterion,
which is divided into exact, heuristic, and simulation procedures. As the forth criterion,
the planning horizon divides the literature into two categories: strategic and operational.
The strategic problems cope with the sizing or positioning of the bu�ers, while the oper-
ational problems consider these variables as input parameters. The operational problems
are further described based on the availability of information. The resequencing prob-
lems can be classi�ed into two subgroups: static or deterministic, when all information
is known; and dynamic or online, when the information is not completely available at
the decision time. The last criterion is based on the resequencing trigger. Boysen et al.
[2012] divide the trigger in reactive and proactive. The reactive problems aim at correct-
ing sequences after disturbances and errors. The proactive procedures are used for the
resequencing of products between production stages with di�erent objective functions.

The boundary conditions of the proposed problem are now described following the
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AS/RS

Figure 6.1: Automated storage and retrieval system (AS/RS) bu�er.

classi�cation on resequencing problems by Boysen et al. [2012]. The products are phys-
ically resequenced using a bu�er placed between the paint shop and the assembly line.
The considered bu�er type is AS/RS (Automated storage and retrieval system), depicted
in Fig. 6.1. This bu�er provides the maximal resequencing �exibility for a given number
of bu�er positions. All vehicles are stored in slots from which they can be retrieved in
any order.

The resequencing of the products is aimed at the optimization of the working e�ort
in the stations of the assembly line. For that, the processing times are considered to
minimize the amount of required utility work [Schumacher et al., 2018; Taube and Minner,
2018]. Therefore, this problem's objective is described as mixed-model sequencing in the
classi�cation.

As the input sequencing of the bu�er exiting the paint shop is considered random, a
solution approach based on simulation is proposed. The resequencing problem is de�ned
as an operational problem, since the bu�er is considered given. The random sequence
implies that the products entering the bu�er are not yet known, so that the decision is
dynamic and online. The available computing time for such solution is very short, since
a new model must be selected at each cycle time. For large manufacturers, the small
cycle times may require a decision in less than a minute. As the information availability
is incomplete and the solution time is very restricted, the proposed resequencing problem
is said to be online [Boysen et al., 2012].

The �nal classi�cation criterion does respect to the resequencing trigger. The bu�er is
used to shu�e the products to minimize the utility work for the assembly line. Therefore,
the problem considers a proactive resequencing.

The problem de�nition also incorporates a due date for each product, so that the
solution method does not hold heavily loaded models in�nitely long in the bu�er. The
used due date is further explained in Subsection 6.1.2.

It is assumed that all the positions of the bu�er can be used for the resequencing. This
means that the bu�er can operate all full capacity without having to assign positions to
hedge for input or output delays.
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6.1.2 Due date de�nition

According to the resequencing classi�cation of Boysen et al. [2012] presented in Subsec-
tion 6.1.1, the minimization of operational costs in the �nal assembly is only one of the
possible objective functions. As the automotive industry oft relies on Just-in-Time pro-
duction, objectives considering the logistic of the assembled parts are also explored in
the literature. For instance, Drexl et al. [2006] solve the sequencing problem considering
both a car-sequencing problem and the level scheduling problem. In this chapter, only the
minimization of the utility work is chosen as an objective function. However, the logistic
of the required assembly parts is considered with a due date restriction. This due date
avoids that products remain large periods in the bu�er and is used as a proxy for the
logistic restrictions.

The minimal due date restriction for a feasible operation of the bu�er can be deter-
mined based on the First-in-First-out rule (FiFo). A new product enters the bu�er in
every cycle, while another product (which can also be the newly arrived product) is se-
lected for production. Applying the FiFo rule for a bu�er with B positions, a product
will remain in the bu�er B − 1 cycles (since the �rst model is sent at cycle 0). In order
to allow any reordering �exibility for the resequencing problem, the products' due date
must account for at least B − 1 cycles.

The due-date restriction is considered a hard constraint. That is, if the due date of a
product has come, the product must be sent to production. This hard constraint simpli�es
the problem so that the objective function only relates to the utility work. If delays could
be monetized, a combined objective function of production costs and delay costs could be
used. Furthermore, a multi-objective problem de�nition is also possible.

6.1.3 Problem-state de�nition, transition function, and solution

policy

A state is de�ned based on all information available at the time of the decision. For a
bu�er of size B, each position of the bu�er can be occupied by any of the combinations of
options available. Each de�ned model has a given processing time in each station and a
given due date, which must be met as a hard constraint. A state can be de�ned with the
processing-time information and the amount of time until the due date for all positions.
In the proposed dataset of Chapter 5, the instance named `Hahn' contains 1.59 · 1012

product combinations. Considering that each model also has a di�erent due date, there
are CB load possibilities that can be encountered in the bu�er, in which C is the number
of possible products or option combinations.

The content of the bu�er alone is not enough to fully describe a state. A decision
on which model is sent to the line depends on whether the workers have enough time
to process the tasks without needing utility work. Therefore, the state de�nition also
contains the position of each worker in each station. As discussed in Chapter 5, the space
between the cycle time equivalent and the station length contains all possibilities of the
end position of a worker. For the instance `Hahn' with 6 stations and utility-work cost
(c2) with a value of 50, the optimal length of the stations are 2341, 2529, 2893, 2493,
3197, and 3658. Given that the used cycle time is 2341, there are 1.67 · 1013 combinations
of worker positions in the stations.

Considering all factors, there are CB ·
∏

s∈S(Lens−CT + 1) possible states which the
system can assume, where S is the set of stations s, whose length is given by Lens. Using
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the largest instance of Chapter 5, instance `Hahn' with 6 stations and cost parameter c2 =
50, the number of possible states surpasses 10135 considering a bu�er with 10 positions.
Such an instance is, however, small compared to real-world assembly-lines instances. An
exact procedure for the problem should be able to select the best model to send to the
assembly line in all these scenarios, given that the next model is random.

The transition from one state to a next state depends on the selected product that
exits the bu�er and a random product that enters the bu�er. The selected product de�nes
the position of the workers for the next state (k + 1) based on a state k in the form

Posk+1
s = max

(
CT ; min

(
Posks + PT kp − CT ;Lens

))
. (6.1)

The position of the worker in each station is bounded by the length of the station. Larger
positions are avoided by requiring utility work. If a model requires a small processing
time, idle time may occur, so that the minimal position is always the equivalent of the
cycle time. In a physical assembly line, the product would require multiple cycle times
to �ow along the line, one station at a time. For state de�nition matters, the resulting
position on all stations can be directly calculated as it only depends on the position and
processing time within each station.

The due dates de�ned in Subsection 6.1.2 are related to a given time frame h. For
the state de�nition, however, the present time is not important. A state with identical
products, worker positions, and relative due dates is identical at any given time. A better
de�nition for the due date (DD) of a product can be given in terms of multiples of cycle
time left for its expiration. The transition function for the time left for the due date is
given by DDk+1

p = DDk
p − 1, for each product p in cycle k.

A solution policy for the problem at hand has to provide a choice between the products
in the bu�er for any given possible state con�guration. Based on the huge number of
possible states, the lack of complete information for the decision, and the strong limit
on the time for the decision, the problem is tackled here using heuristic rules or policies.
These rules and policies are then evaluated by simulation.

6.2 Simulation model

The simulation model used to evaluate the sequencing policies is illustrated in Fig. 6.2.
The simulator is divided into three parts: the model generation, the assembly line simu-
lator, and the model selection.

The model generator is responsible for the random input of products. The new product
is drawn based on task options (as described in Chapter 5). A random number is drawn
for each task, de�ning the selected option. The combination of all the options de�nes
the product. Every time a product is selected to exit the bu�er, a new entry product is
generated.

The worker positions and the necessary utility work is calculated in the line simulator
part. The position of the worker is calculated by Expression 6.1, while the utility work of
a given product (UW k

ps) is given by

UW k
ps = max

(
0, Posk−1

s + PT kps − Lens − CT
)
.

The third element of the simulator is the decision policy. Here, it is decided which of
the products within the bu�er is sent to the assembly line. The data which are available
for the decision are the processing times of each product in each station, the product due
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Task 1: Option 1/2/3
Task 2: Option 1/2 
Task 3: Option 1

…
Probabilities of orders

Option 2
Option 2
Option 1
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Simulation:

Position and utility work calculation

Selection of model

Heuristic rules, metaheuristics,
neural networks, etc.

Model selection

Line simulatorModel generation

Figure 6.2: Structure of the bu�er sequencing simulator.

date, and the position of each worker. The selection must be made in real-time since
a new vehicle is produced in every cycle time. For the selection of models, procedures
such as heuristic rules, metaheuristics, and neural networks can be used. In this chapter,
heuristic rules are presented in Section 6.3, while improvement approaches such as a local
search and a lookahead search algorithm are presented in Section 6.4.

6.3 Heuristic rules

In this section, some heuristic rules are proposed. The rules explore parts of the available
information at the decision time and are used as a benchmark for other procedures.
The heuristic rules are used as a product selection policy in the bu�er and require little
computation so that they can be employed in an online decision setting. For each rule,
each product in the bu�er receives a score, so that the product with the highest (or lowest)
score is chosen and sent to the assembly line.

Since reversibility is desirable, the due dates of each product are modeled as hard
constraints. Therefore, if a product in the bu�er reaches its due date, it is selected
independently from the preferred score given by the heuristic.

The heuristics that are used in the result section are:

� First-in-First-out

� Shortest total processing time

� Shortest total processing time on a subset of stations

� Smallest use of utility work

� Smallest amount of idle time.
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The First-in-First-out (FiFo) rule sends the products exactly in the sequence they
arrive. Therefore, the output sequence is also random and can be used as a reference
value. The shortest total processing time rule selects the least loaded model in terms of
the sum of the processing time in all stations. This selection corresponds to a greedy rule
and is not expected to perform well.

The other three rules aim at better policies for bu�er usage. The shortest total pro-
cessing time on a subset of stations rule considers only the stations in which the worker is
not at the left-most position. That is, the model with the shortest sum of processing times
in the more critical stations is selected. The smallest use of utility work rule calculates the
necessary utility work for all products in the bu�er. The product that would cause the
least amount of utility work is selected. Finally, the last explored heuristic policy selects
the product with the minimal amount of idle time in the stations. In the case when more
than one model ties for a given heuristic, another rule can be used as a tie-breaker. The
due date can also be used for this purpose.

6.4 Improvement approaches

As a solution to the online optimization problem, simple selection policies are suggested in
Section 6.3. Now, two procedures are proposed: the �rst relies on characteristics of each
model alone, while the second is based on partial sequences of the products in the bu�er.
The �rst policy calculates a score value for each product in the bu�er, similar to the
simple heuristics presented in Section 6.3. The score is de�ned with an expression using
the available data at the decision moment: due date of each product, their processing
times, and the position of the worker in each station. Instead of using a simple sum, the
expression is de�ned containing weights and possible exponents and is optimized using a
local search procedure. For this approach, the importance of the di�erent factors in the
expression used for the selection is modeled as the decision variables.

The second policy is a partial lookahead procedure. The lookahead ignores that new
models will enter the bu�er and calculates the best sequence for the production of the
bu�er content, up to a limit of the sequence length. As the decision must be performed in a
short time (a product must be selected within each cycle time), only a partial enumeration
of short sequences is considered.

6.4.1 Expression for the product selection policy

The expression for the selection policy depends on the due date of the product and
the respective worker positions. According to results presented later in Section 6.5 for
the heuristic rules in Section 6.3, expressions based on the resulting utility work of a
given selection are within the best rules tested. Generating an expression with the worker
position does not produce good results, since the positions within the length of the station
do not require utility work and should not be penalized.

The selected expression for the policies is given by

Scorep =
NS∑
s=1

Ks ·XEs
ps ,

in which a score (Scorep) is calculated for each product p. The modeled parameter in the
rule is given by X. One possible rule is to consider Xps to be the respective utility work
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for a given product p in station s. The score value is the sum of these factors, weighted
based on the variables K for the linear coe�cients, and E as the exponents.

The optimization procedure consists of choosing the best set of values K and E so
that the selection policy produces the minimal amount of utility work. These variables
are de�ned as continuous within an interval. For the coe�cients, the interval [−1; 1] is
used, while the exponents are limited to [−2; 2]. The selection of the coe�cients is made
with a local-search algorithm.

6.4.2 Improvement procedures

Local search

An approach for optimizing the score expression is based on testing neighboring solutions
for a given set of values. Starting from a given or random solution, each parameter is
tested independently. A value ∆ is added and subtracted from each parameter, and the
new rule is simulated. This way, the number of simulated answers per iteration is twice
the number of variables. The best solution in the iteration is selected for the starting
solution in the next iteration. The value of ∆ is adjusted in each iteration, according to

∆ =
1

1 + h̄

in which h̄ refers to the number of iterations without improvement. The local search starts
with a large value of ∆ and re�nes the search throughout the iterations. The process is
repeated until a given number of iterations without improvement.

Partial lookahead

The second improvement procedure is based on subsequences of the bu�er's content.
Instead of giving a score value for each product and selecting only one, the procedure
considers combinations of multiple products.

Up to a depth b, all sub-sequences of the content of the bu�er are tested. The se-
quencing with the lowest sum of utility work is selected, and its �rst model is sent to the
�nal assembly line. In the next cycle, a new product arrives and the partial enumeration
is started from scratch. That is, only the �rst model of the selected sequence is actually
�xed. In order to meet the due dates, only sequences without delay are considered.

6.5 Tests and results

For the tests, a dataset containing 45 instances ranging from 3 to 12 stations is used. An
instance is composed of an assignment of tasks to stations and the length of each station.
The tasks can exhibit multiple options, that is, alternative components to be built. The
processing time and the relative probability of each option are also part of the instance
de�nition. The combination of the options of the tasks with their given probabilities
and processing times de�nes each of the possible product variations. For the dataset, the
instances and solutions of Chapter 5 are used. The optimal solutions of 45 of the instances
of Chapter 5 with parameter cost c2 = 10 are selected for the simulation. The used line
structure contains the optimal assignment of tasks for a random production sequence.
By operating the bu�er at the entry of the �nal assembly, the required amount of utility
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work can be expected to decrease. For all instances, a bu�er with 10 positions is used.
The selected value for the due date is twice the minimal required due date described in
Subsection 6.1.2: 2 · (B − 1). This due date is equal to every model entering the bu�er.

The result section contains details on the simulation length and the number of rep-
etitions. Furthermore, the solution quality of the heuristic rules is compared with the
proposed improvement procedures. All instances and results of this chapter are available
again at https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html or
https://celso-sikora.com/publication-list.

6.5.1 Simulation length and number of repetitions

The aim of this chapter lays on the evaluation of the heuristic rules and the improvement
procedures in terms of required utility work. The tested algorithms are solution proposals
for which the solution time is not as important as to show their potential. Therefore, the
simulation length and the number of repetitions are set to a value high enough, so that
the con�dence intervals are small and comparisons are straightforward.

For the validation of the simulation and selection of the simulation length, the simu-
lated assembly line is compared with the results of Chapter 5. In Chapter 5, the expected
value of the utility work for a random sequence is calculated with the help of Markov
chains. Therefore, the simulated results using a FiFo rule can be expected to be similar
to the exact results provided in Chapter 5.

In Table 6.1 simulations of the dataset with di�erent lengths (number of simulated
products) are compared. Using 500 repetitions, the simulations are run for a range of 500
to 100,000 products. Column `UW' contains the expected utility work obtained exactly
using Markov chains. The utility work is expressed in `Utility work time units per cycle'.
The numerical columns contain the relative error (in percent) of the simulation compared
to the expected value. The last two lines of the table contain the maximal and average
values. As expected, the di�erence between the simulated values and the exact value
diminishes with increasing simulation length. In general, the simulation is accurate even
with very small sequences: the average error using a length of only 500 products is on
average 0.373%. For �ne comparisons, however, longer simulation runs may be required.

The variance of the simulated results is also important for the comparison of the two
policies. Based on the standard deviation of the simulation runs and the number of
repetitions, a con�dence interval can be calculated for the average utility work value. The
half-width of the 95%-con�dence intervals based on a normal distribution for all instances
with 500 repetitions is displayed in Table 6.2. The half-widths are displayed relative to
the average value in percentage. An entry of 1.0%, for instance, represents a con�dence
interval of [0.99µ; 1.01µ], in which µ is the average value. As expected, the con�dence
intervals are smaller with an increase in the simulation length.

Based on the results of Tables 6.1 and 6.2, the selected simulation length for all results
shown in the Table 6.3 is of 50,000 products. This selection produces a very low error
from the expected value calculated exactly with the Markov chain (Chapter 5) and has
very narrow con�dence intervals. This length is selected with the expectation that the
di�erent methods show large quality di�erences. Furthermore, it should be expected that
the con�dence interval for rules other than FiFo to vary, since selection rules bias the
produced sequence. For the design of e�cient solution algorithms, the simulation length
may be reduced or selected dynamically. Since the local search requires a large number
of simulations, the simulation length is reduced to 100 iterations of 10,000 products. The

https://www.bwl.uni-hamburg.de/or/team/celso-sikora.html
https://celso-sikora.com/publication-list
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Table 6.1: Relative error of the utility work value for 500 repetitions of simulation lengths of
500 to 100,000.

Instance NS CT
UW Relative abs. error (in %) - Simulation length (thous.)

(exact) 0.5 1 2.5 5 10 25 50 100

Buxey

7 48 0.477 0.237 0.131 0.544 0.059 0.018 0.035 0.033 0.018

8 42 0.629 0.327 0.032 0.039 0.051 0.021 0.113 0.013 0.071

9 38 0.214 0.964 0.394 0.912 0.009 0.113 0.016 0.109 0.087

10 34 0.496 0.179 0.899 0.238 0.175 0.038 0.017 0.062 0.062

11 31 0.751 0.299 0.255 0.120 0.067 0.017 0.027 0.052 0.025

12 29 0.217 0.700 0.877 0.317 0.183 0.516 0.126 0.080 0.002

Gunther

6 77 6.202 0.006 0.284 0.168 0.261 0.078 0.001 0.045 0.029

7 64 5.621 0.238 0.380 0.203 0.009 0.031 0.038 0.063 0.001

8 56 6.148 0.557 0.124 0.009 0.072 0.074 0.034 0.008 0.002

9 54 2.223 0.404 0.477 0.032 0.021 0.199 0.077 0.055 0.022

Hahn

3 4659 71.167 0.380 0.682 0.016 0.080 0.213 0.118 0.003 0.012

4 3566 63.537 0.081 0.561 0.061 0.138 0.073 0.045 0.052 0.018

5 2744 77.16 0.688 0.005 0.146 0.018 0.088 0.055 0.012 0.008

6 2341 132.612 0.001 0.027 0.006 0.065 0.100 0.013 0.012 0.014

7 2123 103.069 0.387 0.479 0.193 0.238 0.065 0.055 0.012 0.029

8 1827 59.619 0.289 0.052 0.129 0.087 0.016 0.102 0.031 0.022

9 1665 47.647 0.192 0.439 0.11 0.153 0.078 0.063 0.038 0.043

10 1588 59.243 0.514 0.001 0.178 0.012 0.081 0.079 0.049 0.002

Heskia

3 327 11.075 0.205 0.365 0.113 0.115 0.036 0.095 0.081 0.063

4 246 12.389 0.291 0.048 0.005 0.198 0.064 0.022 0.021 0.051

5 197 12.621 0.021 0.083 0.044 0.184 0.053 0.001 0.045 0.026

6 164 13.96 0.024 0.003 0.004 0.031 0.068 0.049 0.006 0.009

7 141 14.531 0.281 0.172 0.124 0.055 0.001 0.01 0.049 0.018

8 123 16.46 0.570 0.158 0.143 0.036 0.085 0.033 0.015 0.03

Lutz1
8 1743 91.491 0.204 0.067 0.032 0.080 0.063 0.029 0.073 0.019

9 1595 60.085 0.561 0.412 0.101 0.082 0.062 0.024 0.033 0.004

10 1464 53.219 0.143 0.214 0.029 0.096 0.051 0.074 0.041 0.006

Mitchell

3 36 0.482 0.578 0.085 0.080 0.091 0.101 0.043 0.057 0.058

4 27 0.762 0.352 0.196 0.008 0.037 0.091 0.074 0.008 0.003

5 22 0.604 0.161 0.076 0.762 0.247 0.154 0.079 0.001 0.004

6 19 0.336 0.130 0.731 0.043 0.268 0.015 0.106 0.012 0.051

7 16 0.444 0.417 0.082 0.033 0.012 0.031 0.026 0.069 0.008

8 15 0.518 0.161 0.028 0.101 0.184 0.126 0.066 0.051 0.025

Roszieg

4 29 0.617 0.185 0.118 0.131 0.092 0.257 0.026 0.007 0.034

5 23 0.648 0.846 0.012 0.185 0.100 0.020 0.063 0.017 0.067

6 20 0.533 0.146 0.258 0.208 0.050 0.087 0.050 0.073 0.004

7 18 0.333 1.114 0.524 0.644 0.264 0.229 0.006 0.005 0.034

8 16 0.107 1.761 0.303 0.255 0.150 0.192 0.110 0.014 0.027

9 13 1.050 0.308 0.089 0.199 0.057 0.072 0.031 0.022 0.012

10 12 0.947 0.078 0.690 0.082 0.031 0.039 0.026 0.024 0.007

Sawyer

7 47 0.977 0.313 0.035 0.099 0.238 0.065 0.004 0.034 0.027

8 41 1.037 0.593 0.321 0.316 0.007 0.037 0.031 0.038 0.007

9 37 1.092 0.259 0.102 0.061 0.046 0.088 0.046 0.049 0.027

10 33 1.018 0.231 0.038 0.077 0.158 0.062 0.034 0.026 0.012

11 31 0.809 0.411 0.136 0.002 0.174 0.004 0.013 0.023 0.036

Max 1.761 0.899 0.912 0.268 0.516 0.126 0.109 0.087

Average 0.373 0.254 0.162 0.106 0.088 0.048 0.036 0.025
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Table 6.2: 95%-half-con�dence interval size of the of each simulation in percentage of the av-
erage value for di�erent simulation lengths.

Instance NS CT
Relative size of a half-con�dence interval (%)

0.5 1 2.5 5 10 25 50 100

Buxey

7 48 0.987 0.700 0.464 0.315 0.230 0.152 0.108 0.075

8 42 0.956 0.753 0.478 0.324 0.211 0.135 0.099 0.074

9 38 1.375 0.895 0.560 0.421 0.292 0.179 0.129 0.090

10 34 0.779 0.606 0.371 0.276 0.183 0.119 0.083 0.060

11 31 0.730 0.517 0.322 0.222 0.160 0.102 0.070 0.049

12 29 1.390 0.989 0.593 0.446 0.315 0.205 0.146 0.100

Gunther

6 77 0.749 0.531 0.315 0.227 0.172 0.106 0.077 0.053

7 64 0.839 0.537 0.359 0.238 0.172 0.112 0.080 0.057

8 56 0.741 0.541 0.313 0.227 0.164 0.098 0.070 0.051

9 54 0.784 0.578 0.369 0.255 0.186 0.116 0.080 0.058

Hahn

3 4659 1.073 0.809 0.487 0.373 0.227 0.156 0.112 0.074

4 3566 0.777 0.541 0.350 0.260 0.175 0.111 0.082 0.054

5 2744 0.708 0.490 0.304 0.221 0.155 0.098 0.071 0.050

6 2341 0.621 0.424 0.274 0.193 0.139 0.087 0.059 0.042

7 2123 0.787 0.564 0.336 0.268 0.177 0.116 0.075 0.053

8 1827 0.722 0.514 0.322 0.222 0.162 0.101 0.073 0.052

9 1665 0.814 0.596 0.363 0.259 0.187 0.119 0.079 0.058

10 1588 0.997 0.687 0.415 0.318 0.216 0.139 0.096 0.065

Heskia

3 327 0.861 0.596 0.381 0.265 0.202 0.135 0.093 0.065

4 246 0.745 0.522 0.336 0.236 0.169 0.103 0.080 0.055

5 197 0.781 0.501 0.336 0.228 0.165 0.102 0.073 0.052

6 164 0.720 0.498 0.330 0.218 0.158 0.100 0.073 0.052

7 141 0.556 0.413 0.267 0.184 0.126 0.085 0.061 0.041

8 123 0.589 0.417 0.250 0.183 0.136 0.085 0.063 0.043

Lutz1
8 1743 0.652 0.481 0.285 0.216 0.146 0.090 0.065 0.046

9 1595 0.748 0.519 0.331 0.246 0.169 0.106 0.075 0.051

10 1464 0.674 0.485 0.306 0.215 0.155 0.101 0.069 0.049

Mitchell

3 36 1.036 0.700 0.469 0.331 0.233 0.149 0.102 0.074

4 27 0.774 0.553 0.350 0.251 0.174 0.113 0.078 0.056

5 22 0.887 0.658 0.409 0.280 0.196 0.121 0.090 0.064

6 19 1.007 0.715 0.432 0.312 0.219 0.140 0.102 0.068

7 16 0.838 0.593 0.370 0.260 0.188 0.119 0.087 0.059

8 15 0.879 0.624 0.387 0.270 0.197 0.121 0.085 0.061

Roszieg

4 29 0.838 0.605 0.359 0.259 0.186 0.115 0.079 0.054

5 23 0.997 0.692 0.440 0.332 0.220 0.140 0.096 0.070

6 20 0.735 0.532 0.337 0.233 0.170 0.101 0.075 0.051

7 18 1.166 0.815 0.496 0.352 0.253 0.165 0.107 0.076

8 16 1.575 1.120 0.696 0.474 0.337 0.204 0.152 0.110

9 13 0.614 0.429 0.273 0.190 0.135 0.081 0.059 0.041

10 12 0.640 0.437 0.278 0.193 0.137 0.089 0.062 0.044

Sawyer

7 47 0.815 0.572 0.363 0.253 0.180 0.112 0.081 0.056

8 41 0.811 0.636 0.377 0.273 0.188 0.119 0.085 0.059

9 37 0.791 0.565 0.349 0.257 0.176 0.111 0.079 0.054

10 33 0.814 0.585 0.363 0.261 0.179 0.112 0.081 0.055

11 31 0.800 0.574 0.350 0.248 0.172 0.109 0.075 0.055

Max 1.575 1.120 0.696 0.474 0.337 0.205 0.152 0.110

Average 0.848 0.602 0.376 0.269 0.189 0.120 0.085 0.059
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solutions found by these methods are then re-simulated using 50,000 products for a better
comparison.

6.5.2 Implementation details

The simulator, the heuristics, and the improvement procedures are implemented in C#
and are run on an Intel i7-8700K at 3.7 GHz using up to 6 cores and 32 GB RAM. The
simulations are run in parallel and require between 1.5 and 6 seconds for 500 repetitions
of 50,000 products using the FiFo rule. The local search stopping criteria is set for 20
iterations without any improvement or a total of 200 iterations. For all tests, a warm-up
period of 500 products is used.

6.5.3 Quality of the heuristic rules

The 95%-con�dence intervals of simulations with 500 repetitions for each heuristic policy
are given in Table 6.3. The di�erence in performance is very uniform for the di�erent
rules. Although all rules have roughly the same value for a couple of instances, the
instances with di�erent performances show a clear ranking among the heuristics. The
�rst-in-�rst-out (`FiFo') rule is used as a comparison since it is, in theory, equivalent to
a random sequence. Ordering products by ascending sums of processing times (`shortest
PT') slightly improves the average utility work values (39 out of the 45 con�dence intervals
do not overlap with the FiFo rule). This policy, however, is not very promising, since the
more loaded models accumulate in the bu�er and must leave at their due date at the latest.
An improvement is observed when the sum of the processing times is only performed at
stations with a worker position larger than zero (`St. sm. PT', or Station-speci�c smallest
sum of the processing time). Using this rule, the bu�er would send products with short
durations on the most critical stations, while the processing times in the other stations
are irrelevant. The second better performing rule, on average, is the minimization of the
idle time (`min IT'). Although this rule has a lower average utility work for the whole
dataset, it is not better than the `St. sm. PT' rule for several instances (for instance,
`Hahn' with 8 stations). The reasoning behind this rule is to avoid idle times at the
stations so that the utilization of the workers is high. Finally, the best performing rule of
the set is a greedy rule minimizing the utility work of each assignment itself (`min UW').
The selected model is the one that causes no utility work or the minimal amount among
the options. Besides two instances (`Buxey' with 9 stations and `Roszieg' with 6 stations)
in which the di�erence is within the con�dence intervals, the minimal utility work policy
performs better in all other 43 instances. On average, the required utility work reduced
from 20.785 for a random sequence to 12.380 when using this minimal-utility-work rule.
These results show the cost-reduction potential in assembly lines when a bu�er is used to
resequence the production input. The improvement varies greatly between the instances:
there is no improvement for `Buxey' with 9 stations, while a di�erence of 87.7% (based
on the average values) is observed in `Hahn' with 10 stations.

As the Minimal-Utility-Work Rule (`min UW') performs better than the other tested
ones, it is used as a base for the improvement procedures.

6.5.4 Improving expression-based rules using local search

In this section, local search is used to improve the results of expression-based policies.
The idea behind the procedure is to change one of the expression's parameters at a
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Table 6.3: Con�dence interval of the heuristic policies for the average utility work per cycle for
each instance of the dataset.

Instance NS CT
Utility work - Rule

FiFo Shortest PT St. sm. PT min IT min UW

Buxey

7 48 [0.477, 0.479] [0.475, 0.477] [0.440, 0.442] [0.464, 0.466] [0.419, 0.421]

8 42 [0.628, 0.631] [0.623, 0.625] [0.534, 0.537] [0.582, 0.585] [0.492, 0.494]

9 38 [0.213, 0.214] [0.213, 0.214] [0.213, 0.214] [0.213, 0.215] [0.213, 0.215]

10 34 [0.495, 0.497] [0.495, 0.497] [0.470, 0.471] [0.488, 0.489] [0.462, 0.464]

11 31 [0.750, 0.752] [0.742, 0.744] [0.624, 0.626] [0.701, 0.703] [0.478, 0.480]

12 29 [0.217, 0.218] [0.214, 0.216] [0.163, 0.164] [0.185, 0.186] [0.086, 0.087]

Gunther

6 77 [6.20, 6.22] [6.08, 6.09] [5.55, 5.56] [5.52, 5.54] [4.85, 4.87]

7 64 [5.61, 5.63] [5.48, 5.50] [4.74, 4.75] [4.63, 4.64] [3.98, 4.00]

8 56 [6.14, 6.15] [6.01, 6.03] [5.28, 5.30] [5.18, 5.20] [4.70, 4.72]

9 54 [2.22, 2.23] [2.18, 2.19] [1.74, 1.75] [1.99, 2.00] [1.32, 1.33]

Hahn

3 4659 [70.86, 71.22] [67.10, 67.40] [65.29, 65.63] [53.96, 54.25] [44.77, 45.04]

4 3566 [63.48, 63.68] [62.79, 62.99] [57.65, 57.87] [59.20, 59.41] [49.02, 49.20]

5 2744 [77.07, 77.31] [76.14, 76.37] [71.51, 71.72] [73.02, 73.22] [60.85, 61.04]

6 2341 [132.4, 132.8] [128.5, 128.8] [126.1, 126.4] [91.36, 91.69] [64.44, 64.71]

7 2123 [103.0, 103.3] [99.08, 99.40] [89.77, 90.10] [70.42, 70.73] [26.01, 26.27]

8 1827 [59.62, 59.8] [58.9, 59.09] [50.65, 50.8] [56.00, 56.17] [43.95, 44.11]

9 1665 [47.53, 47.7] [45.33, 45.49] [38.42, 38.57] [36.18, 36.31] [16.95, 17.05]

10 1588 [59.18, 59.44] [55.67, 55.89] [42.15, 42.40] [34.54, 34.73] [7.26, 7.34]

Heskia

3 327 [11.05, 11.09] [10.51, 10.55] [9.94, 9.99] [9.08, 9.13] [6.20, 6.24]

4 246 [12.40, 12.43] [11.92, 11.97] [11.39, 11.44] [10.83, 10.87] [7.67, 7.71]

5 197 [12.63, 12.66] [12.17, 12.21] [11.97, 12.01] [11.15, 11.2] [8.37, 8.40]

6 164 [13.93, 13.97] [13.56, 13.60] [12.65, 12.69] [11.79, 11.83] [8.92, 8.96]

7 141 [14.50, 14.54] [14.43, 14.46] [13.71, 13.75] [13.37, 13.41] [10.24, 10.28]

8 123 [16.45, 16.49] [16.29, 16.33] [15.04, 15.09] [11.97, 12.01] [10.20, 10.24]

Lutz1
8 1743 [91.32, 91.59] [90.08, 90.32] [88.54, 88.76] [81.52, 81.73] [71.37, 71.60]

9 1595 [59.98, 60.18] [58.92, 59.09] [55.5, 55.67] [53.81, 53.99] [47.51, 47.68]

10 1464 [53.16, 53.3] [53.06, 53.22] [47.49, 47.62] [51.92, 52.07] [46.80, 46.95]

Mitchell

3 36 [0.482, 0.484] [0.479, 0.481] [0.447, 0.449] [0.461, 0.463] [0.414, 0.416]

4 27 [0.761, 0.763] [0.756, 0.759] [0.696, 0.698] [0.727, 0.729] [0.664, 0.667]

5 22 [0.603, 0.606] [0.599, 0.601] [0.558, 0.560] [0.570, 0.573] [0.527, 0.529]

6 19 [0.335, 0.337] [0.334, 0.335] [0.31, 0.312] [0.319, 0.321] [0.271, 0.272]

7 16 [0.443, 0.445] [0.438, 0.440] [0.344, 0.345] [0.384, 0.385] [0.268, 0.269]

8 15 [0.517, 0.519] [0.515, 0.517] [0.401, 0.403] [0.473, 0.474] [0.229, 0.230]

Roszieg

4 29 [0.616, 0.618] [0.611, 0.613] [0.571, 0.574] [0.582, 0.584] [0.537, 0.539]

5 23 [0.646, 0.649] [0.628, 0.630] [0.538, 0.541] [0.526, 0.528] [0.447, 0.449]

6 20 [0.533, 0.534] [0.532, 0.534] [0.515, 0.517] [0.526, 0.528] [0.514, 0.516]

7 18 [0.333, 0.334] [0.330, 0.332] [0.239, 0.241] [0.306, 0.308] [0.117, 0.118]

8 16 [0.107, 0.107] [0.105, 0.106] [0.072, 0.073] [0.097, 0.098] [0.024, 0.025]

9 13 [1.05, 1.05] [1.04, 1.04] [0.907, 0.910] [0.962, 0.965] [0.675, 0.678]

10 12 [0.946, 0.949] [0.931, 0.933] [0.744, 0.746] [0.821, 0.824] [0.538, 0.540]

Sawyer

7 47 [0.975, 0.978] [0.967, 0.970] [0.862, 0.865] [0.931, 0.934] [0.798, 0.801]

8 41 [1.03, 1.04] [1.02, 1.02] [0.865, 0.868] [0.936, 0.940] [0.727, 0.731]

9 37 [1.09, 1.09] [1.08, 1.09] [0.968, 0.972] [1.02, 1.03] [0.764, 0.767]

10 33 [1.02, 1.02] [1.01, 1.01] [0.774, 0.776] [0.931, 0.935] [0.541, 0.544]

11 31 [0.809, 0.811] [0.803, 0.806] [0.598, 0.601] [0.749, 0.752] [0.318, 0.320]

Average 20.785 20.234 18.652 16.951 12.380
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time and simulate the behavior of the bu�er. Whenever an improvement is found, the
procedure repeats with the new incumbent solution. The search width ∆ diminishes with
the iterations until a number of iterations without improvement is executed.

Two experiments are proposed for the comparison. In the �rst, the local search al-
gorithm starts with the `min UW'-rule values. For the second experiment, random start
values are used. The expectation to achieve better expression rules is that not all stations
contribute equally to the total amount of utility work. The expected occupation and the
variation of the processing time in each station are not identical. Therefore, di�erent
weights in the expressions may provide better results than choosing the product by a
simple sum of utility work.

Table 6.4 contains the results of both experiments in comparison to the `min UW'
rule. The column `short run' refers to the average amount of utility work obtained by
the local search using the reduced simulation length of 100 repetitions of 10,000 products.
The �nal solutions are re-simulated with 500 repetitions of 50,000 products in the column
`long run', for which the 95% con�dence intervals are given.

The local search with the short runs yields improvements of more than 1% for 42
out of the 45 instances. Evaluating the same solutions with longer simulations shows a
di�erent result: an improvement of 1% is only present in 28 out of the 45 instances. In no
case is the average utility work better in the long simulation. This illustrates a di�culty
of optimization using simulation: what appears to be the best solution throughout the
algorithm is very probably only an optimistic solution. Since a lot of combinations are
tested and only the best is selected, it is natural that simulations with outliers stand
out. In the literature robust optimization with simulation, Beyer and Sendho� [2007]
discuss the use of reevaluating good solutions to reduce this risk. In general, the local
search starting with the `min UW' expression can be slightly improved on average with
the proposed procedure. In comparison with the results of the simulation runs of 500
repetitions, the average utility work for the dataset reduces from 12.38 to 11.97.

The explanation of an improvement is illustrated with the instance `Hahn' with 6
stations, which presents the largest improvement applying the local search. The resulting
expression for the instance is given by

Scorep = 0.952 · UW 1
p1 + 0 · UWp2 + 1 · UW 1

p3 + 1 · UW 0.5
p4 + 1 · UW 1

p5 + 1 · UW 0.947
p6 ,

in which the variables are the utility work caused from a product p, which is expressed
as UWps for station s. The di�erences from the `min UW' rule are the total disregard of
station 2, the decrease of importance of station 4, and some �ne adjustments on stations
1 and 6. The average amount of utility work in each station for the di�erent rules is
shown in Table 6.5. Comparing the `FiFo' and `min UW' rules, the amount of utility
work is reduced in every station (besides 1, which does not require utility work). The
decrease is, however, very unevenly distributed among the stations. The reductions on
stations 2 and 4, for instance, are way smaller than the reductions on stations 3, 5, and
6. One explanation for the improvement of the local search is that the weight on station
2 is completely removed and the exponent decreased for station 4. The result is that
the utility work on station 2 is larger than the `min UW' rule but considerably lower on
stations 3, 5, and 6. The resulting e�ect is a signi�cant reduction in the total utility work
required.

The two rightmost columns of Table 6.4 refer to the local search with a random start
solution. From the 45 tested instances, the random start only produced three rules that
are better than the local search based on the `min UW' rule. On average, the random
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Table 6.4: Comparison of the minimal utility work rule with the expression rules found by local
search.

Instance NS CT
Local search from min UW Local search random start

min UW short run long run short run long run

Buxey

7 48 [0.419, 0.421] 0.411 [0.415, 0.417] 0.616 [0.618, 0.620]

8 42 [0.492, 0.494] 0.489 [0.493, 0.495] 0.883 [0.887, 0.889]

9 38 [0.213, 0.215] 0.211 [0.213, 0.214] 0.211 [0.214, 0.214]

10 34 [0.462, 0.464] 0.459 [0.462, 0.463] 0.460 [0.464, 0.465]

11 31 [0.478, 0.480] 0.466 [0.469, 0.471] 1.00 [1.00, 1.01]

12 29 [0.086, 0.087] 0.085 [0.086, 0.087] 0.373 [0.377, 0.378]

Gunther

6 77 [4.85, 4.87] 4.79 [4.81, 4.83] 5.52 [5.55, 5.57]

7 64 [3.98, 4.00] 3.94 [3.97, 3.98] 5.39 [5.41, 5.43]

8 56 [4.70, 4.72] 4.61 [4.64, 4.65] 4.76 [4.79, 4.81]

9 54 [1.33, 1.33] 1.27 [1.28, 1.28] 2.78 [2.79, 2.80]

Hahn

3 4659 [44.78, 45.04] 44.29 [44.76, 44.92] 44.46 [44.75, 44.91]

4 3566 [49.02, 49.20] 47.44 [48.71, 48.85] 66.34 [69.84, 69.99]

5 2744 [60.85, 61.04] 58.83 [59.13, 59.30] 77.56 [78.22, 78.42]

6 2341 [64.44, 64.71] 57.30 [57.78, 58.01] 82.63 [83.41, 83.66]

7 2123 [26.01, 26.27] 25.57 [26.06, 26.23] 78.23 [78.67, 78.91]

8 1827 [43.95, 44.11] 41.66 [41.93, 42.06] 59.71 [59.90, 60.06]

9 1665 [16.95, 17.05] 13.69 [16.47, 16.54] 15.75 [15.88, 15.94]

10 1588 [7.26, 7.34] 6.96 [7.29, 7.36] 136.94 [137.32, 137.5]

Heskia

3 327 [6.20, 6.24] 5.83 [6.16, 6.18] 6.11 [6.18, 6.20]

4 246 [7.67, 7.71] 7.37 [7.42, 7.44] 8.23 [8.29, 8.32]

5 197 [8.37, 8.40] 7.92 [7.98, 8.01] 8.68 [8.73, 8.76]

6 164 [8.92, 8.96] 8.62 [8.68, 8.71] 9.49 [9.58, 9.61]

7 141 [10.24, 10.28] 9.80 [9.85, 9.87] 12.32 [12.38, 12.41]

8 123 [10.20, 10.24] 9.97 [10.03, 10.06] 11.27 [11.33, 11.37]

Lutz1
8 1743 [71.37, 71.60] 68.70 [68.99, 69.19] 90.15 [90.58, 90.81]

9 1595 [47.51, 47.68] 45.59 [45.82, 45.96] 54.89 [55.17, 55.33]

10 1464 [46.81, 46.95] 45.55 [45.79, 45.96] 55.50 [55.71, 55.87]

Mitchell

3 36 [0.414, 0.416] 0.408 [0.411, 0.412] 0.492 [0.494, 0.496]

4 27 [0.664, 0.667] 0.651 [0.655, 0.657] 0.718 [0.722, 0.724]

5 22 [0.527, 0.529] 0.514 [0.518, 0.519] 0.615 [0.619, 0.621]

6 19 [0.271, 0.272] 0.261 [0.264, 0.264] 0.264 [0.266, 0.267]

7 16 [0.268, 0.269] 0.252 [0.254, 0.255] 0.709 [0.711, 0.713]

8 15 [0.229, 0.230] 0.200 [0.225, 0.226] 0.214 [0.216, 0.217]

Roszieg

4 29 [0.537, 0.539] 0.526 [0.528, 0.529] 0.772 [0.779, 0.78]

5 23 [0.447, 0.449] 0.430 [0.434, 0.436] 0.855 [0.861, 0.863]

6 20 [0.514, 0.516] 0.512 [0.515, 0.517] 0.511 [0.514, 0.515]

7 18 [0.117, 0.118] 0.111 [0.113, 0.114] 0.564 [0.566, 0.567]

8 16 [0.024, 0.025] 0.023 [0.023, 0.024] 0.023 [0.024, 0.025]

9 13 [0.675, 0.678] 0.609 [0.611, 0.613] 0.850 [0.855, 0.857]

10 12 [0.538, 0.540] 0.528 [0.537, 0.539] 0.725 [0.729, 0.731]

Sawyer

7 47 [0.798, 0.801] 0.769 [0.774, 0.777] 0.900 [0.904, 0.907]

8 41 [0.727, 0.731] 0.679 [0.685, 0.688] 0.807 [0.811, 0.813]

9 37 [0.764, 0.767] 0.722 [0.761, 0.763] 0.725 [0.731, 0.733]

10 33 [0.541, 0.544] 0.517 [0.541, 0.543] 0.653 [0.657, 0.659]

11 31 [0.318, 0.320] 0.288 [0.291, 0.292] 0.296 [0.300, 0.302]

Average 12.38 11.77 11.97 18.91 19.11
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Table 6.5: Comparison of the average utility work in each station for di�erent rules applied to
instance `Hahn' with 6 stations.

Rule
Station

Total
1 2 3 4 5 6

FiFo 0.0 9.10 22.73 6.60 29.76 64.49 132.68
min UW 0.0 8.15 11.42 6.30 12.88 25.80 64.55

Local search 0.0 9.11 10.22 6.28 11.26 21.52 58.39

start produced much poorer policies (average of 19.11 as compared to 18.31 for the `min
UW' rule).

From the available results, the local search is able to provide slightly better results
than the `min UW' rule. When starting with the values of 1 in each coe�cient and
exponent (`min UW' rule), the algorithm is able in most instances to perform a �ne
tuning of the policy. The results are, however, only marginally better. The improvement
procedure can also be used with a random start rule. This approach may require multiple
runs since the average results are worse than the simple rule. Other di�culties with this
method relate to the identical rules that can be achieved with di�erent expressions (by
factoring all constants by 0.5, for instance). Further work should consider normalizing
the policy-expression and use methods that can escape local optima.

6.5.5 The lookahead procedure

The second approach to improve the use of the bu�er is to consider the combination
of multiple products in the bu�er. The lookahead procedure partially enumerates the
possible sequences before selecting a model to forward to the assembly line.

In the lookahead algorithm, the required utility work of subsequences of a given length
is calculated. For this, the due date of the products is considered. That is, if a product
has a critical due date, it must be considered in the subsequences. The selection of a
subsequence is performed based on the minimal aggregated utility work required. The
�rst model of the best sequence is selected and sent to production. In the next iteration,
a new product enters the bu�er and the utility work is recalculated. If more than one
sequence exhibits the same amount of utility work, the product with the lowest due date
between the �rst models in the sequences is selected.

For this chapter, the enumeration of subsequences of 2 and 3 products are tested. The
con�dence interval of simulations with 500 repetitions and 50,000 products are given in
Table 6.6. The `min UW' rule can be seen as a lookahead procedure of depth one and
is also listed in the table for comparison. On average, considering multiple products in
the selection can signi�cantly reduce the necessary utility work from 12.38 (`min UW') to
11.20 (lookahead with depth 2) and 10.12 (lookahead with depth 3). The explanation for
the improvement is that a depth larger than 1 can consider the due date of products which
will be due in the next iterations. Suppose that in iteration h there is a product in the
bu�er with due date h+ 1. The `min UW' rule would select the model with the minimal
amount of utility work, even if the selection does not match well the processing times of
the product with due date at h + 1. Using a lookahead search with depth 2, this e�ect
is considered: the selected product is the one that in combination with the critical model
in the next iteration would require the minimal amount of utility work. The results in
Table 6.6 indicate that the amount of utility work decreases, on average, with the depth
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of the search.
However, a larger depth does not necessarily mean that the policy is better. For the

instances `Hahn' with 6, 7, and 10 stations, considering a sequence of 2 products provides
worse results than the `min UW' rule. Speci�cally, for instance `Hahn' with 7 stations,
the `min UW' rule provides better results than the lookahead with 2 or 3 products. Other
instances, such as `Buxey' with 9 stations and `Roszieg' with 8 stations prove to be almost
una�ected by the larger lookahead depths. By exploring the result �les of these instances,
no explanation for the better performance of the simple rule rather than random e�ects.

6.5.6 Summary of the results

From all the reported results, the best of the proposed policies to operate a bu�er at
the entrance of the assembly line with random input is to use a lookahead search. On
average, longer search depths produce better results. At the instances level, however,
the improvement is not equally observable for all instances. `Buxey' with 9 stations, for
instance, shows almost identical results for all tested rules.

As far as the proposed methods are concerned, a depth search (limited by the available
decision time) is the most e�cient decision policy. Since the decisions must be performed
at every cycle time, searches in large bu�ers can only be partial.
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Table 6.6: Comparison of the 95%-con�dence intervals for the lookahead policy.

Instance NS CT
Lookahead depth

1 (`min UW') 2 3

Buxey

7 48 [0.419, 0.421] [0.396, 0.398] [0.395, 0.397]
8 42 [0.492, 0.494] [0.397, 0.399] [0.382, 0.384]
9 38 [0.213, 0.215] [0.213, 0.214] [0.213, 0.215]
10 34 [0.462, 0.464] [0.436, 0.438] [0.435, 0.436]
11 31 [0.478, 0.480] [0.464, 0.467] [0.436, 0.438]
12 29 [0.086, 0.087] [0.055, 0.055] [0.053, 0.053]

Gunther

6 77 [4.85, 4.87] [4.20, 4.22] [3.86, 3.88]
7 64 [3.98, 4.00] [3.17, 3.19] [2.82, 2.83]
8 56 [4.70, 4.72] [3.88, 3.90] [3.50, 3.52]
9 54 [1.32, 1.33] [1.04, 1.05] [0.971, 0.976]

Hahn

3 4659 [44.77, 45.04] [30.31, 30.58] [25.57, 25.79]
4 3566 [49.02, 49.20] [40.11, 40.29] [37.39, 37.53]
5 2744 [60.85, 61.04] [53.91, 54.11] [50.20, 50.39]
6 2341 [64.44, 64.71] [68.41, 68.74] [55.92, 56.18]
7 2123 [26.01, 26.27] [33.02, 33.32] [26.99, 27.23]
8 1827 [43.95, 44.11] [36.49, 36.63] [33.52, 33.65]
9 1665 [16.95, 17.05] [13.78, 13.85] [13.67, 13.74]
10 1588 [7.26, 7.34] [8.82, 8.90] [6.13, 6.19]

Heskia

3 327 [6.20, 6.24] [5.76, 5.80] [5.33, 5.37]
4 246 [7.67, 7.71] [7.26, 7.31] [6.83, 6.87]
5 197 [8.37, 8.40] [7.88, 7.92] [7.35, 7.39]
6 164 [8.92, 8.96] [8.51, 8.56] [8.03, 8.08]
7 141 [10.24, 10.28] [9.59, 9.63] [9.18, 9.22]
8 123 [10.20, 10.24] [10.08, 10.13] [9.95, 9.99]

Lutz1
8 1743 [71.37, 71.60] [63.86, 64.12] [58.98, 59.18]
9 1595 [47.51, 47.68] [40.38, 40.52] [38.04, 38.18]
10 1464 [46.80, 46.95] [42.89, 43.05] [40.95, 41.07]

Mitchell

3 36 [0.414, 0.416] [0.389, 0.391] [0.387, 0.389]
4 27 [0.664, 0.667] [0.618, 0.620] [0.615, 0.617]
5 22 [0.527, 0.529] [0.479, 0.481] [0.475, 0.477]
6 19 [0.271, 0.272] [0.259, 0.260] [0.258, 0.260]
7 16 [0.268, 0.269] [0.206, 0.207] [0.198, 0.199]
8 15 [0.229, 0.230] [0.209, 0.211] [0.205, 0.206]

Roszieg

4 29 [0.537, 0.539] [0.481, 0.482] [0.473, 0.475]
5 23 [0.447, 0.449] [0.331, 0.333] [0.315, 0.316]
6 20 [0.514, 0.516] [0.493, 0.495] [0.492, 0.493]
7 18 [0.117, 0.118] [0.112, 0.113] [0.111, 0.112]
8 16 [0.024, 0.025] [0.024, 0.024] [0.024, 0.024]
9 13 [0.675, 0.678] [0.605, 0.607] [0.596, 0.598]
10 12 [0.538, 0.540] [0.467, 0.470] [0.432, 0.433]

Sawyer

7 47 [0.798, 0.801] [0.710, 0.713] [0.699, 0.701]
8 41 [0.727, 0.731] [0.569, 0.572] [0.542, 0.544]
9 37 [0.764, 0.767] [0.661, 0.664] [0.657, 0.660]
10 33 [0.541, 0.544] [0.448, 0.451] [0.437, 0.439]
11 31 [0.318, 0.320] [0.277, 0.278] [0.270, 0.272]

Average 12.38 11.20 10.12
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Conclusion

7.1 Summary, objectives, and conclusions

This manuscript presents contributions to the literature on the assembly-line balancing
problem including demand uncertainty which is present, for example, in the automotive
industry. The vehicle production is highly customizable and the demand relies directly on
customer orders. Although the dynamic behavior of the demand is common in practice,
the topic is not well represented in the assembly-line balancing literature. The main ob-
jectives of this thesis are evaluated here, along with the most important results described
in each chapter.

Objective 1: description of the production process at automotive manufac-
turers.

The description of the several production stages and their usual organization is de-
scribed in Chapter 2. The justi�cation of the use of assembly lines, among the de�nition
of related optimization problems, is included in the chapter. A special focus is given
to the e�ects of the presence of multiple products in a single assembly system, as well
as the in�uence of the production sequence. The chapter also includes the de�nition of
paced and unpaced systems and it is brie�y explained how bu�ers work in the automotive
production system.

Objective 2: description and classi�cation of the literature on uncertainties
in assembly-line balancing.

Chapter 3 contains a vast literature review on research papers dealing with assembly-
line balancing involving some sort of uncertainty. The chapter starts with the review of
the existing surveys on assembly-line balancing and related problems, describing how the
uncertainty is classi�ed. The classi�cation scheme of Boysen et al. [2007] is extended to
consider the di�erences of how uncertainty is modeled. Contributions to assembly line
balancing, sequencing, rebalancing, resequencing, disassembly, and bu�er allocation are
discussed. It is noted that the uncertainty of processing times dominates the literature
so that the gap of uncertain demand is shown and described.

Objective 3: de�nition of the problem and development of an exact solution
method for the integrated assembly-line-balancing and sequencing problem
under stochastic demand.

In Chapter 4, the algorithm proposed in Sikora [2021] is described and improved. The
approach considers that the assembly-line planner has total control over the sequencing
of the products so that the assembly-line balancing and the sequencing problem can
be solved as a combined problem. As both problems have a di�erent time frame, the
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approach considers a two-stage decision process. On the �rst stage, the assignment of
the tasks is decided, before the line is built and the demand information is known. After
the implementation of the line, the demand realizations occur, so that the sequencing
problem deals with real customer orders. The demand is considered stochastic and is
modeled based on a discrete set of scenarios. The resulting problem consists of a two-
stage stochastic programming problem, in which the balancing and sequencing problems
are the �rst and second stages. A version of the Benders' decomposition algorithm is
developed to solve the problem by exploring its block structure. As the second stage
contains a mixed-integer problem, combinatorial cuts are developed for the algorithm.
The combinatorial cuts are mostly weak and may only cut o� the tested node so that a
relaxed combinatorial cut is also proposed for the algorithm. These cuts are named partial
combinatorial cuts since only parts of the subproblem are solved to generate the cuts. The
strength of these cuts is explored in Section 4.3.2, in which a complete enumeration of all
possible cuts is performed on sample instances to estimate the provided integrality gap.
Further variable reductions and valid inequalities are introduced to reduce the integrality
gap of the procedure. As a complement to the method proposed in Sikora [2021], a local
search routine is integrated into the Benders' decomposition framework, so that �rst-
stage solutions are found faster. The results show a slight improvement of the algorithm
comparing to the one reported in Sikora [2021]. A dataset containing 80 instances of
medium size (50 tasks) is solved in a reasonable time.

Objective 4: de�nition of the problem and development of an exact solution
method for the assembly line balancing under random production sequences.

The fourth objective is the main focus of Chapter 5. For this problem, the boundary
condition is set to no control over the sequence. In the view of the assembly line planner,
the product order is random, given the probabilities for each product variation. The
product models are de�ned based on a combination of task options: discrete choices
the customer has for each element. Examples are engine size and sunroof, which can
be manual, electrical, or non-existent. Based on the combination of tasks with multiple
options, the number of possible products grows exponentially in the number of tasks. In
one of the instances solved in Chapter 5 (`Hahn'), for instance, 1.59 · 1012 products are
possible. In order to model and solve such a large number of variations, it is assumed
that the tasks are independent from each other, as well as independence between the
multiple stations. The stations are isolated by employing utility workers, who guarantee
that the work is �nished within the station's bounds. The aim of the optimization is to
�nd the best task assignments by minimizing a cost function based on the line length and
expected utility work. For a given station length, a Markov chain is used to calculate the
expected utility work for a given assignment. This way, the station length is optimized
for each assignment using a one-variable optimization algorithm. The search process is
implemented within a Branch-and-Bound algorithm. The algorithm is capable to exactly
solve instances of up to 53 tasks within a newly proposed dataset.

Objective 5: de�nition of the problem and development of heuristic policies
for the operation of bu�ers in assembly systems for random product inputs.

In Chapter 6, a view of the problem with industrial restrictions is considered. In this
problem, an assembly-line structure is given, while the operational decision of a bu�er
before the assembly line is the focus of the optimization, which is used to store the
products, allowing some resequencing possibilities. The input to the bu�er is assumed to
be random. The product sequence is selected aiming at the minimization of the utility
work while due dates must be met. As the decision must be made within every cycle



Chapter 7. Conclusion 115

time and the product entry order is unknown, the de�ned problem requires an online
optimization approach. Simple heuristic policies are proposed and tested, along with
a heuristic local-search improvement of the score expression, and a lookahead search
procedure. For the utility work calculation, a simulation model is used. The results show
that the use of a bu�er on the entry of the assembly line can considerably reduce the
amount of utility work needed, comparing to a random sequence.

7.2 Limitations and future works

One limitation of the solution method proposed in this thesis is that they are only applica-
ble to paced assembly lines operating with utility workers. This restriction excludes other
con�gurations, such as synchronous and asynchronous assembly lines, as well as other re-
medial actions such as stopping the line or correcting incompletions at the end of the line.
The choice of a paced system as a focus of the algorithms is not arbitrary. In fact, most of
the problem's decomposability is only possible due to the independence-between-stations
assumption, which relies on the utility workers. Some algorithms such as the Benders' and
the Dantzig-Wolfe decompositions, as well as a Lagrangean-relaxation approach are also
developed by the author for unpaced assembly lines. The results, however, are limited to
extremely small instances since all stations are interconnected by their completion times
in unpaced systems.

The exact procedures of Chapters 4 and 5 also present limitations on the instance size.
Even though medium-sized instances are solved in a reasonable time, real-world assembly
lines may contain hundreds of tasks, which may not be solvable with the proposed algo-
rithms using the given hardware. In the next paragraphs, each contribution chapter is
described individually, showing both, their limitations and their opportunities for further
work.

One important critique of an anonymous reviewer of the article Sikora [2021] is about
scenario generation. In the dataset of Chapter 4 and part of the datasets of Sikora [2021],
demand scenarios are considered given and are used only to test the algorithm and its
components. Further work, however, is lacking in order to produce representative demand
scenarios as input parameters. As discussed in Sikora [2021], the modeled demand can
come from multiple sources of uncertainty. One possibility is to consider the relative
demand of the products as constant while attributing the uncertainty to the random
(in time) order by the customers. In this short-term scenario, the demand variation
can be seen on a daily or weekly basis and is caused by ordering �uctuations. No new
products are introduced or discontinued. A set of scenarios would need to represent the
possible short-term �uctuations, which would be hedged by solving the balancing in the
stochastic framework. These scenarios are expected to repeatedly occur during the life of
the assembly line. This way, an average solution may be meaningful.

Another possibility of demand forecast is a long-term prediction. In this case, the
scenarios would model the entrance, acceptance, or discontinuation of products. Although
the algorithm works the same for any given set of demand scenarios, the solution of a
long-term planning has a di�erent meaning in terms of what is being hedged. Forecasting
product acceptance and consumer trends with discrete scenarios may mean that only one
(or even none of them) would be realized. For this case, the proposed algorithm would
calculate the best assignment for the average of the scenarios, which may not be relevant.
In this regard, a regret function or robust optimization may be more appropriate. Finally,
the prediction models used to forecast the demand are also left as future work.
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The project presented in Chapter 5 is able to optimize assembly lines containing
more than 1012 possible products. This order of magnitude is only possible due to strong
assumptions on the independence of the tasks and stations. If the sequences of two or more
stations are interrelated, the station-wise decomposition is not possible, heavily reducing
the size of instances which can be solved. Furthermore, the independence of tasks may
not always be achievable. In practice, a vehicle with 2 or 4 doors may present di�erent
processing times for mounting the back seats, for instance. A second strong limitation on
the size of the instances is that the length of the stations is a variable to be minimized.
Although this decision shows that considering the length can produce better assembly-line
solutions, a known lower bound for the cost is lacking. In the implementation of Chapter 5,
the lower bounds of the nodes are generated dynamically, by iterating values of station
length. Although a large part of the nodes is cut o� before the complete computation
of the optimal length, all feasible nodes must be generated, as the initial lower bound is
very weak. Because of this, larger instances are limited by the memory of the computer
in the generation of the search tree already. Directions for further work may consider
the development of lower bounds, di�erent enumeration schemes, or an approximative
enumeration procedure for a heuristic solution.

The problem treated in Chapter 6 is an online optimization problem under uncertainty.
Due to the complexity and the limitation on the decision time, only simple heuristic poli-
cies based on score expressions and an incomplete enumeration are tested. As further
work, more elaborated expression-based policies can be explored considering more infor-
mation than only the caused utility work. Another idea is to combine the lookahead
search with the expression-based policies, instead of minimizing the resulting utility work
time only.

A �nal critique is on the focus on traditional assembly lines using conveyor belts for the
movement. A new trend in practice and the literature considers assembly lines without
the restriction of a conveyor belt. In these approaches, the products are transported by
Automated Guided Vehicles (AGVs), changing the �ow shop to job shop hybrid systems.
The �exibility in the movement can improve the task allocation since the layout needs
not to be serial anymore. Furthermore, the movement of the AGVs works as a bu�er,
compensating in travel times or waiting times the model imbalances without stopping the
whole production system. Such a concept is the focus of Hottenrott and Grunow [2019],
who optimize the line layout minimizing cost and movement.
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