

Balancing of assembly lines with collaborative robots:

comparing approaches of the Benders’ decomposition al-

gorithm

Celso Gustavo Stall Sikoraa*, Christian Weckenborgb

a Institute for Operations Research,

University of Hamburg

Moorweidenstraße 18, 20148 Hamburg, Germany

Tel: +49 40 42838-5518

e-mail: celso.sikora@uni-hamburg.de

b Institute of Automotive Management and Industrial Production,

Technische Universität Braunschweig,

Mühlenpfordtstr. 23, 38118 Braunschweig, Germany

Tel: +49 531 391-2207

e-mail: c.weckenborg@tu-braunschweig.de

* Corresponding author

Abstract: In recent years, human workers in manual assembly lines are increasingly being supported by the

deployment of complementary technology. Collaborative robots (or cobots) represent a low-threshold oppor-

tunity for partial automation and are increasingly being utilized by manufacturing corporations. As collabora-

tive robots can be used to either conduct tasks in parallel to the human worker or collaborate with the worker

on an identic task, industrial planners experience an increasingly complex environment of assembly line bal-

ancing. This contribution proposes three different decomposition approaches for Benders’ decomposition algo-

rithms exploring the multiple possible partitions of the formulation variables. We evaluate the performance of

the algorithms by conducting extensive computational experiments using test instances from literature and

compare the findings with results generated by a commercial solver and a metaheuristic solution procedure.

The results demonstrate the Benders’ decomposition algorithms’ efficiency of finding exact solutions even for

large instances, outperforming the benchmark procedures in computational effort and solution quality.

Keywords: assembly line balancing, collaborative robots, cobots, Benders’ decomposition, collaboration

This is an original manuscript of an article published by Taylor & Francis in International Journal of Production Research

on July 7th 2022, available at: https://www.tandfonline.com/doi/full/10.1080/00207543.2022.2093684

Declarations of interest: none

ORCID iD of Celso Gustavo Stall Sikora: https://orcid.org/0000-0001-9180-1206

ORCID iD of Christian Weckenborg: https://orcid.org/0000-0003-3598-4508

1

 Introduction

In the past centuries, the role of automation in industrial manufacture consistently increased.

Consequently, automated assembly lines utilizing industrial robots dominate in the manufac-

turing of standardized products in high volumes and at low costs. In the current state, howev-

er, manufacturers cannot efficiently automate assembly tasks requiring a high degree of flexi-

bility. To this end, they rely on manual assembly lines utilizing the advantages of human

workers.

In the past years, new technologies with the capability to complement human workers in

manual assembly lines emerged. In this field, collaborative robots are discussed as a particu-

larly promising technology (Calzavara et al. 2020; BMAS/BAuA 2018; Fraunhofer IAO

2016). Collaborative robots (cobots) are characterized by inherent security mechanisms elimi-

nating the necessity to install external safety devices, e.g., physical barriers. Therefore, cobots

and workers can share common stations yielding the advantages of both manual and automat-

ed assembly at low costs (Antonelli, Astanin, and Bruno 2016; Krüger, Lien, and Verl 2009).

This human-robot collaboration is characterized by human and cobot sharing the same work-

ing place and time, where the required assembly tasks can be processed by either the human

worker or the cobot individually, or in collaboration of both (Chen et al. 2011; Krüger, Lien,

and Verl 2009; Helms, Schraft, and Hägele 2002). Additionally, cobots are assumed to be

positioned and set up quickly, which is beneficial in cases of their frequent redeployment in

changing production environments (Bosch 2021; Universal Robots 2021; Hashemi-Petroodi et

al. 2020a). Consequently, manufacturing corporations already successfully implemented this

technology in a broad range of applications (IFR 2018; Brigl 2017; Volkswagen 2017;

Schillmoeller 2013). An overview of applications is given by the commercial cobot provider

Robotiq (2021).

2

To effectively utilize this technology, it has to be considered already in the phase of assembly

line balancing. An assembly line consists of 𝑘, 𝑙 ∈ 𝐾 = {1, … , |𝐾|} stations which are con-

nected by a material handling device. The overall work required to assemble a product is split

into individual tasks 𝑖, 𝑗 ∈ 𝐼 = {1, … , |𝐼|} which are characterized by their processing times 𝑡𝑖.

The basic version of assembly line balancing is referred to as the simple assembly line balanc-

ing problem (SALBP). In SALBP, tasks need to be allocated among the stations such that

precedence relations (𝑖, 𝑗) ∈ 𝐸 existing between tasks are considered and the cycle time 𝑐 of

the line is not exceeded. Several objectives can be pursued within assembly line balancing,

e.g., minimizing the cycle time for a given number of stations, or vice versa. The reader finds

an extensive introduction to assembly line balancing in Scholl (1999). The availability of

cobots extends SALBP by three additional characteristics. First, the line planner has to decide

about the allocation of cobots to stations. While human workers are assumed to be available

in each station, cobots represent additional resources to complement the worker in selected

stations. SALBP is therefore extended by an equipment selection problem. Second, the prob-

lem expands toward a scheduling problem for stations with both a human worker and a cobot

as they can conduct different tasks simultaneously. To ensure compliance with the precedence

relations also within the stations, the start and end times of the tasks within the stations have

to be considered. Third, the human worker and the cobot can collaborate on the identic task

which requires both resources to be available at the respective station and at the required

points in time. Therefore, the optional collaboration of resources has to be considered as a

separate mode alternative to the individual task execution by a human worker or a cobot.

The firsts to address the described problem are Weckenborg et al. (2020). In their contribu-

tion, they motivate the problem and identify the characteristics relevant to the problem. They

propose a mixed-integer programming formulation and develop a genetic algorithm to solve

the problem. In their study, they find that the cycle time can be reduced substantially by the

3

effective deployment of cobots. Additionally, they identify the optional collaboration of

worker and cobot on a task as a driver of the improvements which is made frequent use of.

From a computational perspective, however, they were not able to prove the optimality of the

generated results for the majority of instances they consider.

For the described problem, decomposition-based solution approaches may be particularly

suitable to exploit the structure of the problem consisting of decisions relating to the line and

decisions relating to individual stations. In the contribution at hand, we develop a Benders’

decomposition algorithm with three different decomposition approaches. We evaluate our

approaches using the original test set of Weckenborg et al. (2020). The solution approaches

developed in the contribution at hand outperform the previous approaches in both solution

quality and computational effort.

To this end, the remainder of the contribution at hand is structured as follows. In Section 2,

we provide a review of related literature. Subsequently, we introduce the problem setting we

consider in Section 3. The developed Benders’ decomposition algorithm and the associated

decomposition approaches are presented in Section 4. In Section 5, we evaluate the perfor-

mance of the different decomposition approaches. The article concludes in Section 6.

1. Literature review

In this section, we review literature related to the characteristics of the problem we consider

(Section 2.1.) and discuss previous Benders’ decomposition approaches applied on assembly

line balancing problems (Section 2.2). Within the past decades, a rich body of research was

published on assembly line balancing problems. For a general overview of scientific articles

on this topic, please refer to the reviews of Becker and Scholl (2006), Scholl and Becker

(2006), Boysen, Fliedner, and Scholl (2008), and Battaïa and Dolgui (2013).

4

1.1. Assembly line balancing with collaborative robots

Contributions with characteristics relevant to the problem under consideration have to consid-

er the equipment selection problem, scheduling problem, and optional collaboration of re-

sources to cover the availability of cobots in assembly lines. The equipment selection problem

is frequently considered whenever alternative resources can be selected for the execution of

tasks. Frequently, this appears in approaches on the robotic assembly line balancing problem

(RALBP) in the case of automated assembly lines and the assembly line worker assignment

and balancing problem (ALWABP) in the case of manual assembly lines. The scheduling

problem arises if more than one resource can be assigned to a station at the same time. There-

fore, we are particularly concerned with two-sided and multi-manned approaches in RALBP

and ALWABP. As more than one resource is required for an optional collaboration of re-

sources, this characteristic is also to be expected in those approaches or in approaches explic-

itly addressing collaboration in assembly line balancing.

In RALBP, the balancing of automated assembly lines is considered, in which heterogeneous

robots can be allocated among the stations of the line and alternatively conduct assembly

tasks (Rubinovitz and Bukchin 1991; Rubinovitz, Bukchin, and Lenz 1993). A recent review

on RALBP is provided by Chutima (2020). In the majority of contributions, however, only a

single robot can be assigned to each station. The first approach to RALBP with more than one

robot per station is proposed by Aghajani, Ghodsi, and Javadi (2014). In their contribution,

the authors consider the scheduling problem arising in stations with two robots. Lopes et al.

(2017) and Michels et al. (2018) address problems arising in robotic spot welding in the au-

tomotive industry, in which multiple robots may simultaneously perform welding points at the

same car body. However, they assume no or simplified precedence relations to be applicable

within the stations and therefore do not consider the related scheduling problem. Neither of

the aforementioned approaches considers the optional collaboration of resources.

5

Approaches to ALWABP are motivated by the inclusion of disabled workers in sheltered

work centres, in which heterogeneous workers with limited capabilities are allocated among

the stations of the assembly line (Miralles et al. 2007; Miralles et al. 2008). As in RALBP, the

majority of contributions assume the number of workers to be limited to one per station.

Araújo, Costa, and Miralles (2012) overcome this limitation and allow for the allocation of

more than one worker to the stations to promote the allocation of workers with limited capa-

bilities. Janardhanan, Li, and Nielsen (2019) assume two workers per station. Weckenborg

and Spengler (2019) and Weckenborg (2021) assume a setting, in which multiple heterogene-

ous workers and cobots can be allocated in each station. Further contributions address human-

robot collaboration and can therefore be accounted to the RALBP or ALWABP literature

streams (e.g., Çil et al. (2020), Rabbani, Behbahan, and Farrokhi-Asl (2020), Koltai et al.

(2021)). Promising extensions incorporate further characteristics of the used resources into

their evaluation, e.g., variable task times of human workers (Sotskov et al. 2015; Lai et al.

2016). Among the aforementioned approaches, however, neither considers the optional col-

laboration of resources.

In a recent survey, Hashemi-Petroodi et al. (2020b) emphasize the collaboration between hu-

mans and cobots as an important characteristic of future manufacturing systems. In their out-

look, the authors propose the definition of different modes for the execution of tasks by hu-

man workers, cobots, or in collaboration of both as a promising chance to include dual re-

source-constrained considerations into the design of hybrid workstations. In assembly line

balancing, this characteristic is known as a common task, which enforces multiple resources to

be available for its execution. In these cases, the collaboration is given as an external assign-

ment restriction and therefore remains mandatory. Few approaches in the assembly line bal-

ancing literature consider this characteristic (Yazgan et al. 2011; Sikora, Lopes, and Magatão

2017). Further articles consider a mode which they interpret as the collaboration of multiple

6

resources on an identic task (Samouei and Ashayeri 2019; Li, Janardhanan, and Tang 2021;

Dalle Mura and Dini 2019; Yaphiar, Nugraha, and Ma’ruf 2020). These contributions, mainly

motivated by human-robot collaboration, however, neglect that resources can work in parallel

when not occupied with a common task. Therefore, they assume the respective other re-

sources to be idle while one resource executes a task individually. Stecke and Mokhtarzadeh

(2022) adapt the approach of Weckenborg et al. (2020) and extend it to cover mobile robots

and ergonomics.

1.2. Benders’ decomposition approaches to assembly line balancing

The assembly line balancing literature has recently received several contributions using some

form of Benders’ or combinatorial Benders’ decomposition (Sikora 2021). The success of

such decomposition lays in the separate solution of the allocation variables and the corre-

spondent feasibility problem caused by such an assignment. Akpinar, Elmi, and Bektaş (2017)

solve the assembly line balancing problem with set-up times between tasks. The authors di-

vide the problem into a first stage, in which the assignment of tasks to stations is determined,

and a second stage, which is responsible for checking the solution feasibility. At the second

stage, the scheduling of tasks is solved individually for each station. The information on the

feasibility of a solution can be transferred to the first stage by using combinatorial cuts. Zoha-

li, Naderi, and Roshanaei (2021) extend the approach to the type-2 version (cycle time mini-

mization) of the assembly balancing problem with set-up times. A version of the set-up prob-

lem considering different costs for worker abilities is explored in Furugi (2022). Another ap-

plication of the Benders considers multiple workers in the workstations. Huang et al. (2021)

consider two-sided assembly lines, while Naderi, Azab, and Borooshan (2019) solve the prob-

lem for five-sided ALBPs. A version with multi-manned stations without side assignments

can be found in Michels et al. (2019) and Michels, Lopes, and Magatão (2020). A final refer-

7

ence on the literature deals with human and robotic allocation and ergonomics (Stecke and

Mokhtarzadeh 2022).

Most of the references on Benders’ decomposition applied to variations of the assembly line

balancing problem propose only one decomposition scheme: variables deciding the assign-

ment of the tasks to stations at the master problem and the specific integrated problem as a

subproblem. There are, however, multiple possibilities of splitting variables in a decomposi-

tion framework. Including some of the variables of the subproblem in the master problem can

provide better bounds and useful information for the master problem (Rahmaniani et al.

2017).

2. Problem setting and illustrative example

We consider an extension to SALBP (cf. Section 1), in which different modes 𝑝 ∈ 𝑃 =

{pH, pR, pC} with resulting processing times 𝑡𝑖𝑝 are available for the tasks’ manual execution

by human workers (pH with 𝑡𝑖pH
), automated execution by cobots (pR with 𝑡𝑖pR

), and collabo-

rative execution by cobots and workers (pC with 𝑡𝑖pC
). However, not each task may be feasi-

ble for automated or collaborative execution and thus not each mode might be available for

each task. While human workers are assumed to be available at each station 𝑘, we have to

decide about the allocation of cobots to stations (𝑟𝑘 ∈ {0,1}). The number of available cobots

may be limited to 𝑞 units for the assembly line. We decide about the allocation of tasks 𝑖 to

stations 𝑘 and modes 𝑝 (𝑥𝑖𝑘𝑝 ∈ {0,1}). If cobots are involved in a task (i.e., modes pR and pC),

they have to be available at the respective station. If a task is conducted collaboratively, both

a human worker and a cobot have to be available at the respective points in time in the associ-

ated station. To this end, we decide about the scheduling of tasks and determine their starting

time within the stations (𝑠𝑖 ≥ 0). We aim to minimize the cycle time 𝑐 for a given number of

stations.

8

The problem setting is further illustrated in Figure 1 for an example product consisting of

|𝐼| = 10 tasks and |𝐾| = 3 stations. Tasks 𝑖 infeasible with either automated or collaborative

execution are indicated by a processing time of 𝑡𝑖𝑝R
, 𝑡𝑖𝑝C

= ∞, respectively. In a manual as-

sembly line (no cobots available, cf. Figure 1(a)), tasks are executed serially. The optimal

cycle time results in 𝑐 = 21 time units. If one collaborative robot is available (cf. Figure

1(b)), the cycle time can be reduced to 𝑐′ = 17 time units taking advantage of the simultane-

ous execution of tasks by worker and cobot (𝑖 = {1, 2}) or their collaboration on identic tasks

(𝑖 = {4,7}).

Figure 1 – Illustrative example (adapted from Weckenborg et al. (2020))

[Figure 1 Alt-Text: Illustrative example describing the problem setting. Precedence graph

and processing times are presented. If one collaborative robot is available, one task is exe-

Cycle time reduction: Idle time:

2

31

4

5

6

7
8

9 10

Processing

times

Task i

1 8 ∞ 6

2 7 10 5

3 6 ∞ ∞

4 4 ∞ 3

5 5 11 4

6 6 ∞ ∞

7 5 11 4

8 4 ∞ ∞

9 7 ∞ 5

10 5 11 4

Station 3Station 1 Station 2

1H 2

0 8 15 21

3 4 6 7 8

0 4 10 15 19 21

95 10

0 5 12 17 21

cc c

(a) Manual assembly line

Cycle time c: 21 Human idle time: 6

(b) Collaborative assembly line

Station 3Station 1 Station 2

H

0 10 13 17

3 6 8

0 6 12 17

95 10

0 5 12 172R

c‘

1
4 7

c‘ c‘

Cycle time c’: 17 Human idle time: 3

Precedence graph of the example problem

Processing times of

manual (), automated (),

and collaborative () modes

Optimal line balance for manual assembly line (cobots available)

Optimal line balance for collaborative assembly line (1 cobots available)

9

cuted automated and worker and robot collaborate on two other tasks. The cycle time can be

reduced from 21 to 17 time units.]

Our modeling approaches are based on further assumptions:

1. The line is balanced for a single product or the products’ common (mixed) precedence

graph is available.

2. The precedence relations between the tasks are known.

3. Stations are arranged serially. The parallelization of workplaces within stations is of

particular importance to the considered problem but the parallelization of tasks, sta-

tions, or lines is neglected.

4. Processing times are known, deterministic, constant, and sequence-independent for

each of the modes. However, not each mode must be available for each task.

5. A worker and necessary equipment are available in each station. For each station, one

collaborative robot may be assigned additionally.

6. No further assignment restrictions apply.

3. Benders’ decomposition algorithm

The success of the Benders’ decomposition in recent years lays in the formulation of assem-

bly line balancing problem variations with two levels of decisions. In the first level, the bal-

ancing of the assembly line is decided, while the second part of the decision is relegated to the

subproblem. The subproblems may deal with the sequencing of tasks with set-up times (Ak-

pinar, Elmi, and Bektaş 2017), multiple workers (Michels et al. 2019), or multiple products

(Sikora 2021). The division of decisions, however, is not straightforward for the balancing

with cobots since there are multiple possibilities to split the variables between master and

subproblems. The decision whether tasks are performed individually or in the collaborative

mode could be a part of either decision level. According to Rahmaniani et al. (2017), the de-

10

signers of Benders’ algorithms should balance out the size and difficulty of master and sub-

problems to obtain better results. To this end, we explore the different possibilities of splitting

the formulation and identify the potential advantages and disadvantages of each decomposi-

tion approach in Section 4.1. In Section 4.2., we describe the general procedure of the algo-

rithm. Additionally, an optional acceleration technique based on local search is introduced in

Section 4.3.

3.1. Decomposition approaches

The notation common to our decomposition approaches is presented in Table 1.

Table 1 – Definitions of sets, parameters, and variables.

Sets and parameters

Definition 𝐼 Set of tasks 𝑖, 𝑗 ∈ 𝐼 = {1, … , |𝐼|}

𝐾 Set of stations 𝑘, 𝑙 ∈ 𝐾 = {1, … , |𝐾|}

𝑃
Set of modes 𝑝 ∈ 𝑃 = {pH, pR, pC}, in which tasks are processed by human (pH),

robot (pR) or in collaboration (pC), respectively

𝐸 Set of direct precedence relations (𝑖, 𝑗)

𝑡𝑖𝑝 Execution time of task 𝑖 ∈ 𝐼 with processing alternative 𝑝 ∈ 𝑃

𝑡𝑖
min

Minimal required resource time of task 𝑖 ∈ 𝐼 considering both worker and robot.

𝑡𝑖
min = min {𝑡𝑖pH

, 𝑡𝑖pR
, 2 ∙ 𝑡𝑖pC

}

𝑐
Upper bound on cycle time. Initially, 𝑐 = max {𝑡max, 2 · ⌊𝑡sum/|𝐾|⌋},

where 𝑡max = max {𝑡𝑖𝑝|𝑖 ∈ 𝐼, 𝑝 ∈ 𝑃} and 𝑡sum = ∑ max {𝑡𝑖𝑝|𝑝 ∈ 𝑃}𝑖∈𝐼

𝑞 Maximum number of robots to be allocated

𝑁𝑚 Set containing pairs (𝑖, 𝑘) ∈ (𝐼, 𝐾) of assignments of a given feasible solution 𝑚

M Set of balancing solutions m

𝑐𝑚 Known upper bound for the cycle time for a given feasible solution 𝑚

𝐼𝑘 Subset of 𝐼 containing the tasks assigned to a station 𝑘 in a solution 𝑚

Decision and auxiliary variables

𝑥𝑖𝑘𝑝
Binary variable with value 1, if task 𝑖 ∈ 𝐼 is assigned to station 𝑘 ∈ 𝐾

with processing alternative 𝑝 ∈ 𝑃

𝑧𝑖𝑘
Binary variable with value 1, if task 𝑖 ∈ 𝐼 is assigned to station 𝑘 ∈ 𝐾 independ-

ent of the processing alternative

𝑠𝑖
Continuous variable for encoding the start time of task 𝑖 ∈ 𝐼 in the station it is

assigned to

𝑟𝑘 Binary variable with value 1, if a cobot is assigned to station 𝑘 ∈ 𝐾

𝑐 Non-negative variable for encoding the cycle time

𝑦𝑖𝑗 Binary variable with value 1, if task 𝑖 ∈ 𝐼 starts before task 𝑗 ∈ 𝐼 (𝑠𝑖 ≤ 𝑠𝑗)

11

3.1.1. Selecting task mode in the subproblem

In the first approach to decomposing the problem, the master problem is responsible for the

assignment of tasks into stations (variable 𝑧𝑖𝑘), while the mode for each task is decided in the

subproblem. We therefore propose the following decomposition in master problem (expres-

sions (1) to (8)) and subproblem (expressions (9) to (20)).

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝒄
(1)

Subject to:

 ∑ 𝑧𝑖𝑘 = 1

𝑘 ∈ 𝐾

 ∀ 𝑖 ∈ 𝐼
(2)

∑ 𝑧𝑖𝑙 ≤ ∑ 𝑧𝑗𝑙

𝑘

𝑙=1

𝑘

𝑙=1

 ∀ (𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝐾
(3)

 ∑ 𝑟𝑘

𝑘∈𝐾

 ≤ 𝑞
(4)

 ∑ 𝑡𝑖
min 𝑧𝑖𝑘 ≤ 𝑐 + 𝑐 ∙

𝑖 ∈ 𝐼

𝑟𝑘 ∀ 𝑘 ∈ 𝐾
(5)

 ∑ 𝑡𝑖
min 𝑧𝑖𝑘 ≤ 2𝑐

𝑖 ∈ 𝐼

 ∀ 𝑘 ∈ 𝐾
(6)

 𝑧𝑖𝑘 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾
(7)

 𝑟𝑘 ∈ {0,1} ∀ 𝑘 ∈ 𝐾
(8)

The objective function is to minimize the cycle time of the line, estimated by the variable c.

Each task must be assigned to a single station (Expression (2)), while the assignment must

obey the precedence relations (Expression (3)). The allocation of the cobots is also decided in

the master problem, for which the maximal amount of cobots is limited in Expression (4). As

the scheduling of the tasks is not known in the master problem, the resulting cycle time is

estimated using a lower bound. Expression (5) covers the case in which no cobot is assigned

to the workstation. The left-hand side considers the sum of the processing times of the as-

signed tasks at the station, which must be smaller or equal to c. The term 𝑐 ∙ 𝑟𝑘 serves as a

12

Big-M restriction to not enforce the bound if a cobot is assigned. The general case is modelled

in Expression (6). Accordingly, the processing times of the tasks must be considered as the

minimal capacity requirement (𝑡𝑖
min), as the inequality may not be valid if the cobots were

faster than the human workers. 𝑡𝑖
min is determined by the least resource intensive mode of

performing task 𝑖. Its value can be either determined by the time required from a human

worker (𝑡𝑖pH
), from a robot (𝑡𝑖pR

), or the combined time resources used in a collaborative task

(2 ∙ 𝑡𝑖pC
). The sum of the processing times of the assigned tasks must be smaller or equal to

the equivalent of two cycle times, i.e., one for the human worker and one for the cobot.

For the dataset used in Weckenborg et al. (2020), the automated times are modelled as 200%

of the manual time, while the collaborative time corresponds to 70% of the manual time. For

these specific settings, Expression (6) can be improved by using

∑ 𝑡𝑖pH
 𝑧𝑖𝑘 ≤ 1.5 𝑐

𝑖 ∈ 𝐼

 ∀ 𝑘 ∈ 𝐾

since a cobot can contribute at most 50% to the 100% of human productivity when working

individually. When human and cobot collaborate, the resulting productivity is about 143%

(100% / 70%) of the human productivity, which is within the improved expression’s bound.

To check the real cycle time of the solution, the modes for the tasks previously assigned to

station 𝑘 (subset of tasks 𝐼𝑘) are selected and the tasks are sequenced and scheduled using the

following formulation of the subproblems for the individual stations.

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝒄 (9)

Subject to:

 ∑ 𝑥𝑖𝑘𝑝 = 1

𝑝 ∈ 𝑃

 ∀ 𝑖 ∈ 𝐼𝑘 (10)

 𝑐 ≥ 𝑠𝑖 + ∑ 𝑥𝑖𝑘𝑝 ∙ 𝑡𝑖𝑝

𝑝∈𝑃

 ∀ 𝑖 ∈ 𝐼𝑘 (11)

13

 𝑠𝑖 + ∑ 𝑥𝑖𝑘𝑝 ∙ 𝑡𝑖𝑝

𝑝∈𝑃

≤ 𝑠𝑗 ∀ 𝑖, 𝑗 ∈ 𝐼𝑘 , (𝑖, 𝑗)
∈ 𝐸

(12)

 𝑠𝑖 + 𝑡𝑖pC
∙ 𝑥𝑖𝑘pC

≤ 𝑠𝑗 + 𝑐 ∙ (1 − 𝑥𝑖𝑘pC
) + 𝑐 ∙ (1 − 𝑦𝑖𝑗)

∀ 𝑖, 𝑗 ∈ 𝐼𝑘 , 𝑖 ≠ 𝑗 (13)

 𝑠𝑖 + ∑ 𝑥𝑖𝑘𝑝 ∙ 𝑡𝑖𝑝

𝑝∈𝑃

≤ 𝑠𝑗 + 𝑐 ∙ (1 − 𝑥𝑗𝑘pC
) + 𝑐 ∙ (1 − 𝑦𝑖𝑗)

∀ 𝑖, 𝑗 ∈ 𝐼𝑘 , 𝑖 ≠ 𝑗 (14)

𝑠𝑖 + 𝑡𝑖𝑝 ∙ 𝑥𝑖𝑘𝑝 ≤ 𝑠𝑗 + 𝑐 ∙ (1 − 𝑥𝑖𝑘𝑝) + 𝑐 ∙ (1 − 𝑥𝑗𝑘𝑝)

+ 𝑐 ∙ (1 − 𝑦𝑖𝑗)

∀ 𝑖, 𝑗 ∈ 𝐼𝑘 , 𝑖
≠ 𝑗, 𝑝 ∈ {pH, pR}

(15)

 𝑦𝑖𝑗 + 𝑦𝑗𝑖 = 1
∀ 𝑖, 𝑗 ∈ 𝐼𝑘, 𝑖
≠ 𝑗, (𝑖, 𝑗) ∉ 𝐸

(16)

 𝑦𝑖𝑗 = 1
∀ 𝑖, 𝑗 ∈ 𝐼𝑘, (𝑖, 𝑗)
∈ 𝐸

(17)

 𝑥𝑖𝑘𝑝 ∈ {0,1} ∀ 𝑖 ∈ 𝐼𝑘 , 𝑝 ∈ 𝑃 (18)

 𝑦𝑖𝑗 ∈ {0,1} ∀ 𝑖, 𝑗 ∈ 𝐼𝑘, 𝑖 ≠ 𝑗 (19)

 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 𝐼𝑘 (20)

The objective function addresses the minimization of the makespan of the considered station

and therefore supports the minimization of the line’s cycle time (Expression (9)). The choice

of modes is enforced in expression (10). The makespan must be larger than the finishing time

of all tasks within the station (expression (11)). Expressions (12) to (17) are responsible for

the sequencing and scheduling of tasks. For tasks with precedence relations, the sequence is

predetermined (expression (17)). For the other cases, the sequence can be decided based on

the variables 𝑦𝑖𝑗 (expression (16)). If tasks are performed collaboratively, expression (13)

assures that all succeeding tasks are started after these tasks both for human and cobot. Simi-

larly, expression (14) assures all preceding tasks to be finished beforehand. Tasks that are not

performed collaboratively must obey expression (15), which allows for exclusively one task

to be conducted by each worker or cobot at the same time.

The subproblem must only be solved if a cobot is assigned to workstation k. Otherwise, the

scheduling is trivial, since the worker processes all tasks sequentially without idle times.

14

Whenever a subproblem is solved, the optimal makespan and the assignment of tasks to sta-

tions are stored in 𝑐𝑚 and 𝑁𝑚, respectively. The information can then be added to the master

problem in the form of the Cut (21).

𝑐 ≥ 𝑐𝑚 ∙ (∑ 𝑧𝑖𝑘

(𝑖,𝑘)∈𝑁𝑚

− |𝑁𝑚| + 1) ∀ 𝑚 ∈ 𝑀 (21)

This expression assures that the cycle time c is corrected to the real value if the variables 𝑧𝑖𝑘

assume the value of an already solved subproblem.

3.1.2. Selecting task mode in the master problem

A second possibility of decomposing the problem is to include the mode decisions in the mas-

ter problem. The formulation of the master problem consists of expressions (1)–(8) and (22)–

(27).

 ∑ 𝑥𝑖𝑘𝑝 = 𝑧𝑖𝑘

𝑝 ∈ 𝑃

 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (22)

 𝑥𝑖𝑘pR
+ 𝑥𝑖𝑘pC

≤ 𝑟𝑘 ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾 (23)

 ∑(𝑡𝑖pH
 𝑥𝑖𝑘pH

+ 𝑡𝑖pC
 𝑥𝑖𝑘pC

) ≤ 𝑐

𝑖 ∈ 𝐼

 ∀ 𝑘 ∈ 𝐾
(24)

 ∑(𝑡𝑖pR
 𝑥𝑖𝑘pR

+ 𝑡𝑖pC
 𝑥𝑖𝑘pC

) ≤ 𝑐

𝑖 ∈ 𝐼

 ∀ 𝑘 ∈ 𝐾
(25)

 ∑ 𝑡𝑖
min 𝑧𝑖𝑘 ≤ 2𝑐

𝑖 ∈ 𝐼

 ∀ 𝑘 ∈ 𝐾
(26)

 𝑥𝑖𝑘𝑝 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐾, 𝑝 ∈ 𝑃 (27)

By selecting the mode in the master problem, the lower bound on the cycle time c is tighter

since the processing times of humans and cobots are computed separately. The disadvantage

15

of this approach is that the master problem contains more variables, requiring more time to

solve.

As the processing alternatives are determined in the master problem, these decisions can be

fixed in the subproblem. In this case, the subproblem consists of Expressions (9) to (20) but

variable 𝑥𝑖𝑘𝑝 must be treated as a parameter. The information of the optimal solution can be

added to the master problem in the form of Cut (28).

𝑐 ≥ 𝑐𝑚 ∙ (∑ 𝑥𝑖𝑘𝑝

(𝑖,𝑘,𝑝)∈𝑁𝑚

− |𝑁𝑚| + 1) ∀ 𝑚 ∈ 𝑀 (28)

Although the subproblem with fixed modes is easier to solve, Cut (28) is very weak: A solu-

tion of the master problem containing the same task-to-station assignment but with one differ-

ence in one mode would result in the cut 𝑐 ≥ 0.

One alternative to this decomposition scheme is to solve the subproblem defined in Section

4.1.1. assuming the processing alternatives as variables. This way, the combinatorial cut is

created considering all possible processing alternatives (Cut (21)).

3.1.3. Using relaxed decision variables in the master problem

A third option for the decomposition scheme is an intermediary solution between the ones

presented in Sections 4.1.1. and 4.1.2. Here, the master problem is defined with both 𝑧𝑖𝑘 and

𝑥𝑖𝑘𝑝 variables as in Section 4.1.2. Variables 𝑥𝑖𝑘𝑝, however, are defined as continuous varia-

bles within the bounds [0,1]. This setting allows for the formulation of the expressions (24)

and (25) in the master problem without adding any binary variables to the formulation. Alt-

hough continuous variables for the assignments will probably not be an integer within feasible

solutions, these expressions can improve the bound on the cycle time. For this variant, the

subproblem and combinatorial cut are the same as the one presented in Section 4.1.1.

16

3.2. The combinatorial Benders’ decomposition algorithm

The original algorithm of Benders (1962) is designed for subproblems containing only con-

tinuous variables since the cuts formulated based on the subproblem use the information of

the shadow price of such variables. If the subproblem contains integer or binary variables,

cuts based on the linear relaxation of the subproblem or combinatorial cuts can be used in-

stead (Rahmaniani et al. 2017).

The algorithm is explained in Figure 2. Every solution of the master problem is used to for-

mulate subproblems. For every station with a cobot, the scheduling subproblem is solved to

obtain the real cycle time of the assignment. If the cycle time is equal to the optimal solution

of the master problem, the algorithm converges and the found solution is optimal. If the cycle

time checked in the subproblem is larger than the estimated in the master problem, a combina-

torial cut correcting the estimation is added to the master problem.

Figure 2 – Diagram of the algorithm

17

[Figure 2 Alt-Text: Flow chart describing the procedure of the decomposition algorithm. The

algorithm has three steps: solve master problem, solve subproblem k, and test convergence.

The solution of the master problem is used for the subproblem, which is then checked for con-

vergence, and used to generate combinatorial cuts for the master problem.]

Instead of solving the master problem in each iteration, an alternative implementation consid-

ers adding combinatorial cuts “on the fly” (Codato and Fischetti 2006). This option is possible

in commercial solvers via callbacks. After every feasible solution found in the master prob-

lem, the subproblems are formulated and solved. The cut is then added dynamically during

the solution of the master problem.

3.3. Accelerating Benders’ decomposition with local search

According to the survey on Benders’ decomposition by Rahmaniani et al. (2017), the solution

of the master problem can take a considerable amount of time. In the computation experi-

ments of Sikora (2022), the time spent by the algorithm on the master problem is often more

than 90% of the algorithm’s running time.

To deal with this drawback, some authors consider finding solutions to the master problem

heuristically (Costa et al. 2012). Caserta and Voß (2021) propose one approach in which a

local search is used for the master problem. Instead of resuming the master problem solution

after adding a cut, some time is spent on the neighbourhood of the incumbent solution. If any

better solution for the master problem is found, the corresponding subproblems are solved and

new cuts are added. This way, feasible solutions are found earlier, and more cuts are added on

average for the same amount of time.

For the implementation of this acceleration technique, a model containing the same variables

and restrictions of the master problem is solved with additional restrictions (29) and (30), in

which 𝑁𝑚 is set containing the last solution found.

18

∑ 𝑧𝑖𝑘

(𝑖,𝑘)∈𝑁𝑚

≤ |𝑁𝑚| − 𝑀𝑖𝑛𝐷𝑖𝑓𝑓
(29)

∑ 𝑧𝑖𝑘

(𝑖,𝑘)∈𝑁𝑚

≥ |𝑁𝑚| − 𝑀𝑎𝑥𝐷𝑖𝑓𝑓
(30)

Restriction (29) assures that the solution is not identical to the previous solution. Expression

(30) controls the size of the solution neighbourhood. The values of MinDiff and MaxDiff can

be set accordingly. At least one assignment difference is required to obtain a different solu-

tion, while the parameter MaxDiff must be set not very high so that the local search can be

solved quickly.

4. Computational experiments

4.1. Data and computational setting

A dataset for the assembly line balancing with collaborative robots is proposed in Wecken-

borg et al. (2020) and is used in this section to test the performance of the algorithm. This is

the only available test set requiring all relevant information. To facilitate future research on

the optional collaboration on identic tasks in assembly line balancing, the used test instances

are available online in the supplementary material to this article.

The dataset is divided into three parts: small, medium, and large-sized instances containing

20, 50, and 100 tasks, respectively. The dataset contains a total of 1,500 instances, 500 for

each instance size. The instances are enriched with specific parameters on the number of sta-

tions, the number of available cobots, and the feasibility of automated and collaborative exe-

cution of the tasks. The number of stations is defined to 5 and 10 for small instances (where

either of these is used for half of the corresponding instances), 13 and 25 for medium instanc-

es, and 25 and 50 for large instances. The number of cobots is chosen to result in a robot den-

19

sity (i.e. the share of cobots to station) of 0%, 20%, or 40%. From the 1,500 instances, 300

instances represent a robot density of 0%, 600 consider a robot density of 20%, and the re-

maining 600 consider cobots to be available for 40% of the workstations. The tasks that can

be performed by a cobot and/or collaboratively were selected randomly during the instance

generation process. The number of tasks that can be performed by cobots (and collaborative-

ly) is set to 20% for half of the instances and 40% for the other half.

For the computational experiments, the Benders’ decomposition algorithm is initialized with a

feasible solution by solving the problem using the SALOME algorithm for SALBP (Scholl

and Klein 1997). The solution without a cobot is an upper bound for the cycle time since the

processing time can only get smaller by considering the additional assignment of cobots.

From the Weckenborg et al. (2020) dataset, only 1,200 of the 1,500 instances are used, as the

remaining do not consider cobots. The search for an initial solution is limited to 300 seconds,

which are accounted for in the total solving time of the algorithm. Small and medium-size

instances are solved with a time limit of 7,200 seconds, while the large-size instances have a

time limit of 28,800 seconds. All calculations are performed on machines with 8 virtual cores

of a 2.5 GHz Intel Xeon Platinum 8180 processor and 32 GB RAM.

4.2. Algorithm configurations

The three decomposition frameworks described in Section 4.1. are implemented in Visual

Studio 2013 using Gurobi 9.0.1 as a solver for the master and subproblems. Based on prelimi-

nary tests, the local search improvement described in Section 4.3. is effective only for the

framework proposed in Section 4.1.2. Therefore, the four algorithms tested correspond to

those described in sections 4.1.1. (Benders 1), 4.1.2. without local search (Benders 2), 4.1.3.

(Benders 3), and 4.1.2. with local search (Benders 4).

20

For the local search, the same parameters are used as in Sikora (2022). After each integer so-

lution found in the master problem, the neighborhood is searched. A time limit of 60 seconds

is used for each iteration of the neighborhood search. If no better solution is found within this

limit, the local search iteration is aborted. Furthermore, MinDiff is set to 1, MaxDiff is set to 6.

With a limit of at most 6 differences, the local search procedure can often quickly identify

good neighboring solutions, if they exist. The local search should help finding integer solu-

tions but not hinder the convergence of the algorithm. As implemented in Sikora (2022), the

local search is limited to two iterations only before resuming the master problem solution.

Moreover, the time spent in local search is measured and inactivated whenever it exceeds

10% of the total time spent in the algorithm.

4.3. Numerical results

The four versions of the decomposition algorithm (Benders 1 to 4) are compared based on

their results on the 400 small instances of the dataset. A comparison of the results is given in

Table 2. The instances are sorted based on the number of stations, the number of robots avail-

able, and the robot and collaboration flexibility of tasks. For each of the four versions of the

algorithm, we report the CPU running time in seconds. Furthermore, column ΔObj MIP ex-

presses the difference in the objective function values obtained by the decomposition methods

and the MIP solution. The values of ΔObj MIP are computed firstly by calculating the percen-

tual difference for each of the contained instances individually and then calculating the aver-

age over the 50 instances in each row.

For the small instances, all four decomposition strategies achieve similar values for the objec-

tive function. The average values reported in Table 2 do not show any difference in terms of

solution quality for the proposed methods. There are, however, slight variations when the in-

dividual instances are observed. Within the time limit of 7,200 seconds, Benders 1 solves 399

21

of the 400 instances optimally, while Benders 2, Benders 3, and Benders 4 prove the optimali-

ty of only 376, 370, and 381 instances out of 400, respectively. The difference in behaviour

can be observed strongly in the average CPU time, since even without the optimality proof for

some instances, their upper bounds are optimal or close to optimal. For the small instances,

Benders 1 performed best, since it solves more instances and requires lower solution times on

average. The second candidate based on these results is Benders 4, which requires less aver-

age CPU times for every group compared to Benders 2 and Benders 3.

Another view of the algorithms’ performance can be seen in the performance behaviour illus-

trated in Figure 3. Here, the curves of the number of instances solved to optimality up to a

given run time are displayed. In the x-axis, a factor in relation to the minimal solution time is

used, in logarithmic scale as described in Moré and Wild (2009). While the profile curves

confirm the superiority of Benders1 for the small instances, the behaviours of Benders2,

Benders3, and Benders4 are very similar. For further tests with medium and large size in-

stances, only Benders 1 and Benders 4 are explored, as Benders4 dominated the profile curves

of Benders2 and Benders3.

22

Figure 3 – Performance profile for small instances

[Figure 3 Alt-Text: Performance profile for the small instances. The graph shows the number

of instances that can be solved within a factor of the time limit of the lowest solution time. In

the figure, Benders1 is above all other methods. Benders4 has the second place, being closely

followed by Benders3 and Benders4. The MIP results are way under the other algorithms.]

Table 2 – Comparison of Benders' decomposition approaches for small instances

S
ta

ti
o
n

s

R
o
b

o
ts

F
le

x
ib

il
it

y
 Benders 1 Benders 2 Benders 3 Benders 4

CPU

∅ (𝜎) [s]

ΔObj MIP

∅ (𝜎) [%]

CPU

∅ (𝜎) [s]

ΔObj MIP

∅ (𝜎) [%]

CPU

∅ (𝜎) [s]

ΔObj MIP

∅ (𝜎) [%]

CPU

∅ (𝜎) [s]

ΔObj MIP

∅ (𝜎) [%]

5 1 0.2 28 (88) -0.1 (0.2) 34 (88) -0.1 (0.2) 42 (108) -0.1 (0.2) 15 (25) -0.1 (0.2)

5 1 0.4 83 (293) -0.1 (0.2) 79 (236) -0.1 (0.2) 59 (105) -0.1 (0.2) 57 (113) -0.1 (0.2)

5 2 0.2 115 (272) -0.1 (0.4) 54 (130) -0.1 (0.4) 75 (235) -0.1 (0.4) 14 (26) -0.1 (0.4)

5 2 0.4 76 (222) -0.2 (0.4) 136 (295) -0.2 (0.4) 230 (663) -0.2 (0.4) 151 (354) -0.2 (0.4)

10 2 0.2 45 (121) 0.0 (0.1) 1191 (2462) 0.0 (0.1) 1401 (2756) 0.0 (0.1) 424 (1425) 0.0 (0.1)

10 2 0.4 20 (44) 0.0 (0.1) 1328 (2683) 0.0 (0.1) 1486 (2821) 0.0 (0.1) 1172 (2537) 0.0 (0.1)

10 4 0.2 173 (1008) 0.0 (0.0) 450 (1445) 0.0 (0.0) 735 (1990) 0.0 (0.0) 197 (1010) 0.0 (0.0)

10 4 0.4 95 (305) 0.0 (0.0) 1442 (2868) 0.0 (0.0) 1474 (2870) 0.0 (0.0) 1391 (2789) 0.0 (0.0)

23

For the following analyses, we compare the results of the methods for all instance sizes of the

dataset. Each of the methods (MIP, GA, Benders 1, and Benders 4) is run with a time limit of

7,200 seconds for the small and medium instances and 28,800 seconds for the large size in-

stances. As the GA randomly selects parents for the genetic replication and additionally ter-

minates after a specific number of replications when not further improving the objective val-

ue, up to ten runs of the GA may be conducted as long as the overall run time complies the

time limit.

The results are given in Table 3 and Table 4. Both tables contain all 1,200 instances of the

dataset. In Table 3, the CPU times are reported along with their solution quality in terms of

optimality gap (for the MIP) and percentage difference to the MIP solutions (for GA, Benders

1, Benders 4). The percentage difference to MIP solutions, however, can only be calculated

for the instances in which the MIP finds a feasible solution. Therefore, the given values con-

sider only the instances that can be compared and do not represent the average of all 50 in-

stances for each row. The number of instances in each row with feasible solutions and a com-

plete comparison with all instances is given in Table 4.

According to the results in Table 3 and Table 4, the MIP formulation using a commercial

solver is not capable to solve a considerable part even of the small instances: 149 out of 400

instances are not solved to optimality. For medium and large instances, the number of stations

has a large impact on the solvability of the MIP model. For the instances with shorter lines

(13 stations for medium instances and 25 for large instances), only 3 and 0 instances are

solved to optimality using the MIP formulation on medium and large instances, respectively.

For the longer lines, 116 of the 200 instances of medium size and only 15 of the 200 large size

instances are solved optimally. Concerning time, the MIP formulation requires more CPU

time than any proposed Benders’ decomposition but wins in respect to time for some parame-

ters in comparison to the genetic algorithm.

24

The number of stations is one of the main drivers of the difficulty to solve an instance. Such a

factor is directly related to the size of the subproblem since lines with more stations have few-

er tasks per station and, therefore, smaller scheduling problems. Consequently, we find only

one large instance with 25 stations being solved by Benders 1 and Benders 4, while 142 and

152 large instances with 50 stations are solved by these decomposition algorithms, respective-

ly. This fact contradicts common results of the simple assembly line balancing literature. Ac-

cording to Otto, Otto, and Scholl (2013), the SALBP instances generated with few tasks per

station are the hardest to solve. Since there may not be many combinations of two or three

tasks close to a lower bound, SALBP algorithms tend to enumerate more combinations for

such instances. In the case of ALBP considering cobots, this effect is less important than the

required time for solving the scheduling problems within the stations.

Concerning the average objective value, Benders 4 provides better results in comparison to

the genetic algorithm and Benders 1. As shown in Table 3, Benders 4 presents a smaller or the

same percentage difference to the MIP solution in all groups of instances. Furthermore, the

time comparison between the Benders decompositions and the genetic algorithm is skewed to

the decomposition algorithm: Benders 1 requires less CPU time on average for 20 of the 24

instance groups. For the instances individually, Benders 1 solved 977 out of the 1200 instanc-

es faster than the genetic algorithm, as displayed in Table 4.

Another meaningful comparison can be drawn for the two decomposition algorithms. Alt-

hough the solution quality of Benders 4 is superior for the dataset, Benders 1 solved more

instances to optimality. By inspecting log files of some instances, it can be observed that

Benders 4 finds good upper bounds earlier than Benders 1 due to the integrated local search

procedure. These upper bounds of Benders 4, however, do not necessarily result in a better

algorithm for proving optimality. As the master problem of Benders 4 has more variables and

25

more possible combinations, ruling out that a better solution may exist seems to be harder for

this version of the decomposition algorithm.

Another view on the comparison of the algorithms is provided by the profile curves in Figure

4 for the medium-size instances, Figure 5 for the large instances, and Figure 6 for all instanc-

es. Although Benders1 presents the better profile for the small instances, this behaviour

chances for other instance sizes. For the medium-size instances in Figure 4, the profile of

Benders1 still dominates the curve of Benders4, although the lead is smaller than the one for

the smaller instances. For the large instances, shown in Figure 5, the profile dominance shifts

in favour of Benders4. The profiles show, therefore, that the relative performance of the de-

composition alternatives depends on the instance size. Finally, the profile curves for all 1,200

instances of the dataset are given in Figure 6. The sum of the contribution of all instance sizes

masks the dominance: Benders1 is slightly better than Benders4 for all instances, although

both profiles are similar to each other.

Although the MIP approach provided by Weckenborg et al. (2020) is clearly dominated for all

instance sizes, the comparison is biased since another version of the solver was used for the

solution. To provide a better comparison basis, one instance of all classes (12.5% of the total

dataset) is solved using the older version of Gurobi (8.1) for the decomposition algorithms.

The profile curve is given in Figure 7. As expected, the newer version of the solver improves

the performance of the algorithms. Even with the older version, however, the profile curves of

both decomposition versions largely dominate the one of the MIP solutions. It is interesting to

observe that the newer version of the solver greatly improves the relative performance of

Benders4, while the curve for Benders1 is almost identical.

26

Figure 4 – Performance profile for medium instances

[Figure 4 Alt-Text: Performance profile for the medium instances. The graph shows the num-

ber of instances that can be solved within a factor of the time limit of the lowest solution time.

In the figure, Benders1 dominates above the curve for Benders4. Both versions of Benders (1

and 4) present much better results than the MIP.]

27

Figure 5 – Performance profile for large instances

[Figure 5 Alt-Text: Performance profile for the large instances. The graph shows the number

of instances that can be solved within a factor of the time limit of the lowest solution time. In

the figure, Benders4 presents better results than the other methods (Benders1).]

28

Figure 6 – Performance profile for all instances

[Figure 6 Alt-Text: Performance profile for all instances. The graph shows the number of

instances that can be solved within a factor of the time limit of the lowest solution time. In the

figure, Benders1 presents better slightly results than Benders4. The MIP is dominated by the

decomposition methods.]

29

Figure 7 – Performance profile for 12.5% of the instances using different versions of the solv-

er.

[Figure 7Alt-Text: Performance profile for 12.5% of all instances including all sizes. The

graph shows the number of instances that can be solved within a factor of the time limit of the

lowest solution time. In the figure, Benders1 and Benders 4 using Gurobi 9.01 and Bendes1

using Gurobi 8.1 present similar behaviour. Benders4 with Gurobi 8.1 is clearly dominated.

The MIP is the method that solve the lowest number of instances.]

30

Table 3 – Results comparison for mixed-integer programming approach (MIP), genetic algorithm (GA), and Benders' decomposition approaches

In
st

a
n

ce
s

(t
a
sk

s)

S
ta

ti
o
n

s

R
o
b

o
ts

F
le

x
ib

il
it

y
 MIP GA Benders 1 Benders 4

CPU ∅ (𝜎) [s] Gap ∅ (𝜎) [%]

CPU ∅ (𝜎) [s]
ΔObj MIP

∅ (𝜎) [%]

CPU ∅ (𝜎)

[s]

ΔObj MIP ∅ (𝜎)

[%]
CPU ∅ (𝜎) [s]

ΔObj MIP

∅ (𝜎) [%]

S
m

a
ll

 (
2
0
)

5 1 0.2 3610 (3590) 23.9 (13.8) 558 (161) 0.1 (0.3) 28 (88) -0.1 (0.2) 15 (25) -0.1 (0.2)

5 1 0.4 3624 (3577) 28.3 (13.8) 781 (317) 0.2 (0.3) 83 (293) -0.1 (0.2) 57 (113) -0.1 (0.2)

5 2 0.2 3564 (3563) 18.3 (13.8) 1087 (307) 0.3 (0.8) 115 (272) -0.1 (0.4) 14 (26) -0.1 (0.4)

5 2 0.4 3652 (3551) 25.7 (14.5) 1319 (417) 0.3 (0.8) 76 (222) -0.2 (0.4) 151 (354) -0.2 (0.4)

10 2 0.2 1898 (3144) 16.6 (12.6) 717 (146) 0.3 (0.9) 45 (121) 0.0 (0.1) 424 (1425) 0.0 (0.1)

10 2 0.4 1910 (3137) 23.2 (10.9) 747 (149) 0.2 (0.8) 20 (44) 0.0 (0.1) 1172 (2537) 0.0 (0.1)

10 4 0.2 1520 (2858) 9.1 (10.3) 1515 (327) 0.2 (0.6) 173 (1008) 0.0 (0.0) 197 (1010) 0.0 (0.0)

10 4 0.4 1660 (2956) 23.6 (8.2) 1600 (357) 0.7 (1.3) 95 (305) 0.0 (0.0) 1391 (2789) 0.0 (0.0)

M
ed

iu
m

 (
5
0
)

13 3 0.2 7063 (809) 35.5 (13.8) 4080 (1007) -0.7 (1.5) 3868 (3476) -0.6 (1.7) 4260 (3298) -2.1 (1.5)

13 3 0.4 7200 (0) 39.5 (12.1) 5153 (1096) -1.3 (1.6) 3636 (3564) -1.3 (5.8) 4942 (3014) -3.0 (1.4)

13 5 0.2 7074 (882) 30.4 (16.3) 6392 (918) -0.2 (2.4) 4030 (3348) -0.3 (1.6) 3990 (3291) -2.4 (2.1)

13 5 0.4 7200 (0) 35.2 (13.9) 6945 (536) -0.9 (2.1) 3921 (3435) 5.5 (31.1) 5544 (2756) -3.3 (1.6)

25 5 0.2 3243 (3374) 20.4 (7.8) 4514 (1564) 0.8 (2.0) 2699 (3362) -0.1 (0.8) 2995 (3513) -0.7 (1.3)

25 5 0.4 3480 (3315) 25.2 (8.2) 4911 (1590) 0.2 (1.4) 2503 (3261) -0.6 (1.0) 2998 (3510) -1.1 (1.6)

25 10 0.2 3133 (3347) 18.0 (9.5) 6594 (843) 1.3 (2.0) 1613 (2828) 0.1 (1.0) 2453 (3220) -0.4 (1.1)

25 10 0.4 3292 (3339) 21.8 (6.7) 6723 (740) 1.1 (2.1) 2513 (3309) -0.3 (0.9) 2767 (3430) -0.9 (1.6)

L
a

rg
e

(1
0

0
)

25 5 0.2 28800 (0) 38.5 (11.2) 16298 (3957) -1.9 (2.7) 28799 (2) 0.3 (3.9) 28745 (106) -4.7 (2.5)

25 5 0.4 28800 (0) 42.6 (13.4) 21962 (4441) -4.8 (7.4) 28367 (3024) -5.8 (7.5) 28744 (106) -7.4 (7.2)

25 10 0.2 28800 (0) 35.5 (11.0) 27100 (2502) -1.7 (3.0) 28800 (0) 4.4 (7.7) 28513 (1629) -6.4 (2.3)

25 10 0.4 28800 (0) 38.6 (14.9) 28634 (709) -4.9 (14.7) 28266 (3737) -5.0 (15.4) 28745 (107) -9.1 (14.2)

50 10 0.2 28150 (3018) 49.2 (35.4) 19630 (5884) -16.1 (34.4) 10453 (13217) -17.2 (33.6) 6918 (12197) -18.7 (33.3)

50 10 0.4 28506 (1416) 60.5 (0.0) 21710 (5768) -15.1 (26.2) 8462 (12633) -15.1 (26.2) 6958 (12177) -15.1 (26.2)

50 20 0.2 28325 (2151) 9.6 (0.0) 27592 (2690) 0.0 (0.9) 10654 (13217) 2.2 (9.8) 6921 (12195) -1.6 (3.6)

50 20 0.4 28699 (535) 22.5 (15.1) 27802 (2679) -9.7 (13.9) 8032 (12175) -11.3 (15.5) 6982 (12164) -11.3 (15.5)

31

Table 4 – Competitive results for MIP, GA, and Benders' decomposition approaches
In

st
a
n

ce
s

(t
a
sk

s)

S
ta

ti
o
n

s

R
o
b

o
ts

F
le

x
ib

il
it

y
 MIP GA Benders 1 Benders 4

#feas #opt
Obj

≤ MIP

CPU

≤

MIP

 #feas #opt
Obj

≤ MIP

Obj

≤

GA

CPU

≤
 MIP

CPU

≤

GA

#feas #opt

Obj

≤
 MIP

Obj

≤

GA

CPU

≤

MIP

CPU

≤

GA

S
m

a
ll

 (
2
0
)

5 1 0.2 50 24 37 25 50 50 50 50 50 50 50 50 50 50 50 50

5 1 0.4 50 25 33 25 50 50 50 50 50 48 50 50 50 50 50 50

5 2 0.2 50 25 31 25 50 50 50 50 50 49 50 50 50 50 50 50

5 2 0.4 50 25 30 25 50 50 50 50 50 50 50 50 50 50 50 49

10 2 0.2 50 37 42 14 50 50 50 50 50 50 50 48 50 50 50 45

10 2 0.4 50 37 40 13 50 50 50 50 50 50 50 43 50 50 50 41

10 4 0.2 50 39 42 11 50 49 50 50 49 49 50 49 50 50 50 49

10 4 0.4 50 39 31 12 50 50 50 50 49 49 50 41 50 50 47 40

M
ed

iu
m

 (
5
0

)

13 3 0.2 50 2 37 49 50 24 37 29 50 24 50 23 50 50 50 21

13 3 0.4 50 0 42 50 50 25 47 40 50 27 50 19 50 49 50 20

13 5 0.2 50 1 31 49 50 25 39 32 50 41 50 25 50 49 50 40

13 5 0.4 50 0 34 50 50 24 46 38 50 48 50 14 50 49 50 43

25 5 0.2 50 29 35 21 50 35 46 48 50 35 50 29 50 50 50 32

25 5 0.4 50 28 37 22 50 35 50 49 50 39 50 29 50 50 50 34

25 10 0.2 50 30 29 20 50 40 44 48 50 50 50 34 50 50 50 50

25 10 0.4 50 29 32 21 50 34 45 48 49 50 50 31 50 50 50 50

L
a

rg
e

(1
0

0
)

25 5 0.2 42 0 42 50 50 0 29 20 50 1 50 0 50 50 50 1

25 5 0.4 44 0 47 50 50 0 49 34 50 9 50 0 50 50 50 9

25 10 0.2 44 0 38 50 50 0 21 13 50 29 50 1 50 50 50 30

25 10 0.4 45 0 41 50 50 1 35 23 50 46 50 0 50 50 50 46

50 10 0.2 7 4 49 48 50 35 50 38 50 40 50 38 50 50 50 45

50 10 0.4 4 3 50 49 50 34 50 47 50 45 50 38 50 50 50 47

50 20 0.2 6 5 49 47 50 33 49 39 49 48 50 38 50 50 50 50

50 20 0.4 6 3 49 47 50 38 50 45 50 50 50 38 50 50 50 50

32

5. Conclusions

This paper presents exact methods for the assembly line balancing problem allowing the use

of collaborative robots (cobots) to aid in the assembly. The proposed exact methods are based

on combinatorial Benders’ decomposition, which splits the problem in master and subprob-

lems that are iteratively solved. As the division of the original problem can be performed in

multiple forms, three different decompositions are proposed, implemented, and tested. Fur-

thermore, a fourth version of the algorithm combining local search is proposed.

Cobots represent a low threshold means of partial automation of assembly tasks and are,

therefore, an important lever for further efficiency improvements in manufacturing industries.

The major advantage of cobots is their capability to work closely with human workers. There-

fore, they can either conduct assembly tasks individually in parallel to the human worker or

collaborate with her on the identic task. However, the associated decisions line planners have

to consider induce a high complexity to the assembly line balancing problem. Consequently,

solution procedures need to provide high-quality suggestions for the decision-makers. Since

cobots are frequently mobile and can be redeployed quickly, the computational effort should

additionally be small to facilitate the cobots efficient use in industries.

To this end, we compare our exact procedures to the previously proposed exact and heuristic

approaches of Weckenborg et al. (2020). Our proposed algorithms provide better results on

average in terms of both solution quality and CPU time. One version of the decomposition

algorithm (Benders 1) can solve 784 instances out of the 1200 instance dataset to optimality.

However, the question of which decomposition strategy works best is not clearly answered.

The way of dividing variables of the original problem in master and subproblem affects mul-

tiple aspects of the algorithm. For the obtained results, one version of the decomposition algo-

rithm (Benders 4) is able to provide most of the best upper bounds. This algorithm, nonethe-

33

less, can prove the optimality of fewer instances in comparison to other approaches. Further-

more, the profile curves of the algorithms show that the relative performance of the decompo-

sition depends on the size of the instances, implying that no decomposition approach seems to

dominate all others.

In the future, research on the comparison of decomposition strategies can be extended to other

problems. Moreover, instances with a small number of stations and, therefore, more tasks per

station proved to be harder to solve and may be of interest to further algorithm developments.

In practice, collaborative robots are also discussed as a promising lever to relieve workers

from biomechanical load and therefore serve an ergonomic purpose (Weckenborg, Thies, and

Spengler 2022; Stecke and Mokhtarzadeh 2022). However, evaluating the distribution of

biomechanical load between human and cobot when tasks are performed collaboratively re-

mains a major challenge for future research.

Funding: This research did not receive any specific grant from funding agencies in the public,

commercial, or not-for-profit sectors.

Data availability statement: The authors confirm that the data supporting the findings of this

study are available within the article [and/or] its supplementary materials.

34

6. References

Aghajani, M., R. Ghodsi, and B. Javadi. 2014. “Balancing of robotic mixed-model two-sided

assembly line with robot setup times.” The International Journal of Advanced Manufactur-

ing Technology 74 (5-8): 1005–16. doi:10.1007/s00170-014-5945-x.

Akpinar, Sener, Atabak Elmi, and Tolga Bektaş. 2017. “Combinatorial Benders cuts for as-

sembly line balancing problems with setups.” European Journal of Operational Research

259 (2): 527–37. doi:10.1016/j.ejor.2016.11.001.

Antonelli, Dario, Sergey Astanin, and Giulia Bruno. 2016. “Applicability of Human-Robot

Collaboration to Small Batch Production.” In Collaboration in a Hyperconnected World.

Vol. 480, edited by Hamideh Afsarmanesh, Luis M. Camarinha-Matos, and António Lucas

Soares, 24–32. IFIP Advances in Information and Communication Technology. Cham:

Springer International Publishing.

Araújo, Felipe F., Alysson M. Costa, and Cristóbal Miralles. 2012. “Two extensions for the

ALWABP: Parallel stations and collaborative approach.” International Journal of Produc-

tion Economics 140 (1): 483–95. doi:10.1016/j.ijpe.2012.06.032.

Battaïa, O., and A. Dolgui. 2013. “A taxonomy of line balancing problems and their solution

approaches.” International Journal of Production Economics 142 (2): 259–77.

doi:10.1016/j.ijpe.2012.10.020.

Becker, C., and A. Scholl. 2006. “A survey on problems and methods in generalized assembly

line balancing.” European Journal of Operational Research 168 (3): 694–715.

Benders, J. F. 1962. “Partitioning procedures for solving mixed-variables programming prob-

lems.” Numer. Math. 4 (1): 238–52. doi:10.1007/BF01386316.

BMAS/BAuA. 2018. “Sicherheit und Gesundheit bei der Arbeit - Berichtsjahr 2017.” Ac-

cessed July 05, 2020. https://bit.ly/3727bjl.

35

Bosch. 2021. “Bosch APAS – flexible robots collaborate in Industry 4.0.” Accessed Novem-

ber 03, 2021. https://bit.ly/3GJgaYf.

Boysen, Nils, Malte Fliedner, and Armin Scholl. 2008. “Assembly line balancing: Which

model to use when?” International Journal of Production Economics 111 (2): 509–28.

doi:10.1016/j.ijpe.2007.02.026.

Brigl, Silke. 2017. “BMW Group Harnesses Potential of Innovative Automation and Flexible

Assistance Systems in Production.” Accessed November 03, 2021. https://bit.ly/2KwLyjA.

Calzavara, Martina, Daria Battini, David Bogataj, Fabio Sgarbossa, and Ilenia Zennaro. 2020.

“Ageing workforce management in manufacturing systems: state of the art and future re-

search agenda.” International Journal of Production Research 58 (3): 729–47.

doi:10.1080/00207543.2019.1600759.

Caserta, Marco, and Stefan Voß. 2021. “Accelerating mathematical programming techniques

with the corridor method.” International Journal of Production Research 59 (9): 2739–71.

doi:10.1080/00207543.2020.1740343.

Chen, Fei, Kosuke Sekiyama, Hironobu Sasaki, Jian Huang, Baiqing Sun, and Toshio Fuku-

da. 2011. “Assembly Strategy Modeling and Selection for Human and Robot Coordinated

Cell Assembly.” 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, San Francisco, CA, 4670–75. doi:10.1109/IROS.2011.6048306.

Chutima, Parames. 2020. “A comprehensive review of robotic assembly line balancing prob-

lem.” J Intell Manuf. doi:10.1007/s10845-020-01641-7.

Çil, Zeynel A., Zixiang Li, Suleyman Mete, and Eren Özceylan. 2020. “Mathematical model

and bee algorithms for mixed-model assembly line balancing problem with physical hu-

man–robot collaboration.” Applied Soft Computing 93: 106394.

doi:10.1016/j.asoc.2020.106394.

36

Codato, Gianni, and Matteo Fischetti. 2006. “Combinatorial Benders' Cuts for Mixed-Integer

Linear Programming.” Operations Research 54 (4): 756–66. doi:10.1287/opre.1060.0286.

Costa, Alysson M., Jean-François Cordeau, Bernard Gendron, and Gilbert Laporte. 2012.

“Accelerating benders decomposition with heuristicmaster problem solutions.” Pesqui.

Oper. 32 (1): 3–20. doi:10.1590/S0101-74382012005000005.

Dalle Mura, Michela, and Gino Dini. 2019. “Designing assembly lines with humans and col-

laborative robots: A genetic approach.” CIRP Annals - Manufacturing Technology 68 (1):

1–4. doi:10.1016/j.cirp.2019.04.006.

Fraunhofer IAO. 2016. “Lightweight robots in manual assembly: Best to start simply! .” Ex-

amining companies' initial experiences with lightweight robots. Accessed November 03,

2021. https://bit.ly/3bCmLW4.

Furugi, Ahad. 2022. “Sequence-dependent time- and cost-oriented assembly line balancing

problems: a combinatorial Benders’ decomposition approach.” Engineering Optimization

54 (1): 170–84. doi:10.1080/0305215X.2021.1953003.

Hashemi-Petroodi, S. E., Alexandre Dolgui, Sergey Kovalev, Mikhail Y. Kovalyov, and Si-

mon Thevenin. 2020a. “Workforce reconfiguration strategies in manufacturing systems: a

state of the art.” International Journal of Production Research, 1–24.

doi:10.1080/00207543.2020.1823028.

Hashemi-Petroodi, S. E., Simon Thevenin, Sergey Kovalev, and Alexandre Dolgui. 2020b.

“Operations management issues in design and control of hybrid human-robot collaborative

manufacturing systems: a survey.” Annual Reviews in Control 49: 264–76.

doi:10.1016/j.arcontrol.2020.04.009.

Helms, E., R. D. Schraft, and M. Hägele. 2002. “rob@work: Robot Assistant in Industrial

Environments.” Proceedings / IEEE ROMAN 2002, 11th IEEE International Workshop on

Robot and Human Interactive Communication, Berlin, Germany, 399–404.

37

Huang, Dian, Zhaofang Mao, Kan Fang, and Biao Yuan. 2021. “Combinatorial Benders de-

composition for mixed-model two-sided assembly line balancing problem.” International

Journal of Production Research, 1–27. doi:10.1080/00207543.2021.1901152.

IFR. 2018. “SHAD opts for UR robot arms to optimize its manufacturing processes.” Ac-

cessed November 03, 2021. http://bit.ly/2CRXuDH.

Janardhanan, Mukund N., Zixiang Li, and Peter Nielsen. 2019. “Model and migrating birds

optimization algorithm for two-sided assembly line worker assignment and balancing prob-

lem.” Soft Computing 23: 11263–76. doi:10.1007/s00500-018-03684-8.

Koltai, Tamás, Imre Dimény, Viola Gallina, Alexander Gaal, and Chiara Sepe. 2021. “An

analysis of task assignment and cycle times when robots are added to human-operated as-

sembly lines, using mathematical programming models.” International Journal of Produc-

tion Economics 242: 108292. doi:10.1016/j.ijpe.2021.108292.

Krüger, J., T. K. Lien, and A. Verl. 2009. “Cooperation of human and machines in assembly

lines.” CIRP Annals - Manufacturing Technology 58 (2): 628–46.

doi:10.1016/j.cirp.2009.09.009.

Lai, Tsung-Chyan, Yuri N. Sotskov, Alexandre Dolgui, and Aksana Zatsiupa. 2016. “Stability

radii of optimal assembly line balances with a fixed workstation set.” International Journal

of Production Economics 182: 356–71. doi:10.1016/j.ijpe.2016.07.016.

Li, Zixiang, Mukund N. Janardhanan, and Qiuhua Tang. 2021. “Multi-objective migrating

bird optimization algorithm for cost-oriented assembly line balancing problem with collab-

orative robots.” Neural Computing and Applications;, no. 33: 8575–96.

doi:10.1007/s00521-020-05610-2.

Lopes, Thiago C., Celso G. S. Sikora, Rafael G. Molina, Daniel Schibelbain, Rodrigues, Luiz

Carlos de Abreu, and Leandro Magatão. 2017. “Balancing a robotic spot welding manufac-

38

turing line: An industrial case study.” European Journal of Operational Research 263 (3):

1033–48. doi:10.1016/j.ejor.2017.06.001.

Michels, Adalberto S., Thiago C. Lopes, and Leandro Magatão. 2020. “An exact method with

decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned as-

sembly line balancing problem.” Operations Research Perspectives 7: 100163.

doi:10.1016/j.orp.2020.100163.

Michels, Adalberto S., Thiago C. Lopes, Celso G. S. Sikora, and Leandro Magatão. 2018.

“The Robotic Assembly Line Design (RALD) problem: Model and case studies with prac-

tical extensions.” Computers & Industrial Engineering 120: 320–33.

Michels, Adalberto S., Thiago C. Lopes, Celso G. S. Sikora, and Leandro Magatão. 2019. “A

Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly

line balancing problem.” European Journal of Operational Research 278 (3): 796–808.

doi:10.1016/j.ejor.2019.05.001.

Miralles, Cristóbal, Jose P. García-Sabater, Carlos Andrés, and Manuel Cardos. 2007. “Ad-

vantages of assembly lines in Sheltered Work Centres for Disabled. A case study.” Interna-

tional Journal of Production Economics 110 (1-2): 187–97. doi:10.1016/j.ijpe.2007.02.023.

Miralles, Cristóbal, José P. García-Sabater, Carlos Andrés, and Manuel Cardós. 2008.

“Branch and bound procedures for solving the Assembly Line Worker Assignment and

Balancing Problem: Application to Sheltered Work centres for Disabled.” Discrete Applied

Mathematics 156 (3): 352–67. doi:10.1016/j.dam.2005.12.012.

Naderi, Bahman, Ahmed Azab, and Katayoun Borooshan. 2019. “A realistic multi-manned

five-sided mixed-model assembly line balancing and scheduling problem with moving

workers and limited workspace.” International Journal of Production Research 57 (3):

643–61. doi:10.1080/00207543.2018.1476786.

39

Otto, A., C. Otto, and A. Scholl. 2013. “Systematic data generation and test design for solu-

tion algorithms on the example of SALBPGen for assembly line balancing.” European

Journal of Operational Research 228 (1): 33–45. doi:10.1016/j.ejor.2012.12.029.

Rabbani, Masoud, Seyedeh Z. B. Behbahan, and Hamed Farrokhi-Asl. 2020. “The Collabora-

tion of Human-Robot in Mixed-Model Four-Sided Assembly Line Balancing Problem.” J

Intell Robot Syst 100 (1): 71–81. doi:10.1007/s10846-020-01177-1.

Rahmaniani, Ragheb, Teodor G. Crainic, Michel Gendreau, and Walter Rei. 2017. “The

Benders decomposition algorithm: A literature review.” European Journal of Operational

Research 259 (3): 801–17. doi:10.1016/j.ejor.2016.12.005.

Robotiq. 2021. “Collaborative Robot: Buyer's Guide.” Accessed November 03, 2021.

https://bit.ly/2Tpxjz7.

Rubinovitz, J., and J. Bukchin. 1991. “Design and balancing of robotic assembly lines.” Pro-

ceedings of the Fourth World Conference on Robotics Research: September 17-19, 1991,

Pittsburgh, Pennsylvania.

Rubinovitz, J., J. Bukchin, and E. Lenz. 1993. “RALB - A Heuristic Algorithm for Design

and Balancing of Robotic Assembly Lines.” CIRP Annals - Manufacturing Technology 42

(1): 497–500.

Samouei, Parvaneh, and Jalal Ashayeri. 2019. “Developing optimization & robust models for

a mixed-model assembly line balancing problem with semi-automated operations.” Applied

Mathematical Modelling 72: 259–75. doi:10.1016/j.apm.2019.02.019.

Schillmoeller, Sandra. 2013. “Innovative human-robot cooperation in BMW Group Produc-

tion.” Accessed November 03, 2021. http://bit.ly/29NxTA7.

Scholl, A., and C. Becker. 2006. “State-of-the-art exact and heuristic solution procedures for

simple assembly line balancing.” European Journal of Operational Research 168 (3): 666–

93.

40

Scholl, Armin. 1999. Balancing and sequencing of assembly lines. Second revised edition.

Heidelberg: Physica.

Scholl, Armin, and Robert Klein. 1997. “SALOME: A Bidirectional Branch-and-Bound Pro-

cedure for Assembly Line Balancing.” INFORMS Journal on Computing 9 (4): 319–34.

doi:10.1287/ijoc.9.4.319.

Sikora, Celso G. S. 2021. “Benders’ decomposition for the balancing of assembly lines with

stochastic demand.” European Journal of Operational Research 292 (1): 108–24.

doi:10.1016/j.ejor.2020.10.019.

Sikora, Celso G. S. 2022. “Balancing Under Full Sequencing Control.” In Assembly-Line

Balancing under Demand Uncertainty, edited by Celso G. S. Sikora, 65–95. Gabler Theses.

Wiesbaden: Springer Fachmedien Wiesbaden.

Sikora, Celso G. S., Thiago C. Lopes, and Leandro Magatão. 2017. “Traveling worker assem-

bly line (re)balancing problem: Model, reduction techniques, and real case studies.” Euro-

pean Journal of Operational Research 259 (3): 949–71. doi:10.1016/j.ejor.2016.11.027.

Sotskov, Yuri N., Alexandre Dolgui, Tsung-Chyan Lai, and Aksana Zatsiupa. 2015. “Enu-

merations and stability analysis of feasible and optimal line balances for simple assembly

lines.” Computers & Industrial Engineering 90: 241–58. doi:10.1016/j.cie.2015.08.018.

Stecke, Kathryn E., and Mahdi Mokhtarzadeh. 2022. “Balancing collaborative human–robot

assembly lines to optimise cycle time and ergonomic risk.” International Journal of Pro-

duction Research 60 (1): 25–47. doi:10.1080/00207543.2021.1989077.

Universal Robots. 2021. “Cobots offer game changing benefits.” Accessed November 03,

2021. https://bit.ly/2vxAEQS.

Volkswagen. 2017. “Human robot cooperation: KLARA facilitates greater diversity of ver-

sions in production at Audi.” Accessed November 03, 2021. https://bit.ly/3gesLFy.

41

Weckenborg, C., C. Thies, and T. S. Spengler. 2022. “Harmonizing ergonomics and econom-

ics of assembly lines using collaborative robots and exoskeletons.” Journal of Manufac-

turing Systems 62: 681-702.

Weckenborg, Christian. 2021. Modellbasierte Gestaltung von Fließproduktionssystemen im

Spannungsfeld von Ergonomie und Ökonomie. Wiesbaden: Springer Gabler.

Weckenborg, Christian, Karsten Kieckhäfer, Christoph Müller, Martin Grunewald, and

Thomas S. Spengler. 2020. “Balancing of assembly lines with collaborative robots.” Busi-

ness Research 13 (1): 93–132.

Weckenborg, Christian, and Thomas S. Spengler. 2019. “Assembly Line Balancing with Col-

laborative Robots under consideration of Ergonomics: a cost-oriented approach.” IFAC-

PapersOnLine 52 (13): 1860–65.

Yaphiar, Susanto, Cahyadi Nugraha, and Anas Ma’ruf. 2020. “Mixed Model Assembly Line

Balancing for Human-Robot Shared Tasks.” In IMEC-APCOMS 2019: Proceedings of the

4th International Manufacturing Engineering Conference and the 5th Asia Pacific Confer-

ence on Manufacturing Systems, edited by Muhammed N. Osman Zahid, 245–52. Lecture

Notes in Mechanical Engineering Ser. Singapore: Springer Singapore Pte. Limited.

Yazgan, Harun R., Ismail Beypinar, Semra Boran, and Ceren Ocak. 2011. “A new algorithm

and multi-response Taguchi method to solve line balancing problem in an automotive in-

dustry.” Int J Adv Manuf Technol 57 (1-4): 379–92. doi:10.1007/s00170-011-3291-9.

Zohali, Hassan, Bahman Naderi, and Vahid Roshanaei. 2021. “Solving the Type-2 Assembly

Line Balancing with Setups Using Logic-Based Benders Decomposition.” INFORMS Jour-

nal on Computing. doi:10.1287/ijoc.2020.1015.

