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Abstract

Assembly lines, especially those with welding procedures, can present several tasks with the same

properties. These tasks can be treated as tasks with replicas, simplifying the problem. A Mixed

Integer Linear Programming model is presented for the Simple Assembly Line Balancing Problem

with Multiple Identical Tasks (or Repeated Tasks). Integer variables were used to define the number

of identical tasks performed in each station. Along with variable reduction rules, the compact

formulation presents only a fraction of the variables of equivalent binary models when several

repeated tasks are present. Three instances inspired in real assembly lines and adapted benchmark

problems with repeated tasks are used to compare the formulations. Using a universal solver,

the integer formulation outperformed the binary formulation for the vast majority of instances

and achieved competitive results in relation to the efficient procedure SALOME-2 (a dedicated

algorithm based on branch-and-bound for Simple Assembly Line Balancing Problem). Grouping

identical tasks proved to simplify the problem, allowing the procedure to solve larger instances.
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1. Introduction

The Assembly Line Balancing Problem (ALBP) is the problem in which a set of product

assembly operations is divided among workstations in flow-lines. Firstly defined by Salveson (1955),

an ALBP solution is the task partition that maximizes an assembly line efficiency. The allocation of

tasks, however, is subjected to technological restrictions in respect of the order tasks are assigned.

When a task depends on the conclusion of another operation, a precedence relation is defined.

An ALBP can be described by a graph G in which weighted nodes V are tasks to be allocated

in stations S {1, ...,M} and edges represent the precedence relations A (Scholl, 1999). An instance
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can be defined as G = {V,A, t} where V is the set of tasks i {1, ..., N}, and ti is the duration time

of task i. As a result of precedence relations, Pi (Fi) is defined as the set of direct predecessors

(successors) of task i, while A is the task pairs (i, j) | {i ∈ V, j ∈ Fi}. The set P ∗i (F ∗i ) contains

all predecessors (successors) of task i, including direct and indirect relations. As an example, in

Fig. 2, Task 1 is a direct predecessor of Task 4 while Task 10 is an indirect successor of Task 1.

Several ALBP variations have been modeled based on characteristics found in the industry.

When several products are assembled in the same line, a mixed-model balancing is necessary

(Gökcen & Erel, 1998). Further improvement on production levels are possible by integrating the

balancing problem with the model sequencing problem (Hamzadayi & Yildiz, 2013; Kucukkoc &

Zhang, 2014). Another related problem that can be solved simultaneously is the allocation of

workers along the assembly line (Borba & Ritt, 2014; Vilà & Pereira, 2014; Moreira et al., 2015;

Ramezanian & Ezzatpanah, 2015; Sikora et al., 2016). Moreover, assembly line may present two

operation sides (Lee et al., 2001) or set-up times between operation pairs (Yolmeh & Kianfar,

2012). An effort of systematic classification of models was performed by Boysen et al. (2007) while

recent reviews on general topics on ALBP are from Becker & Scholl (2006), Boysen et al. (2008)

and Battäıa & Dolgui (2013).

The basic version of the problem, which is the base for most of the its extensions, was labeled

by Baybars (1986). In his survey, Baybars defined the Simple Assembly Line Balancing Problem

(SALBP) as subjected to several simplification hypothesis (SH):

• (SH-1) All stations are equally equipped and manned

• (SH-2) Task processing time is independent of the workstation

• (SH-3) Any station is able to perform any task

• (SH-4) The assembly line is serial, no feeder or subassembly lines are considered

• (SH-5) The assembly line is designed for the production of a single product

• (SH-6) All problem’s parameters are deterministic (processing time and precedence relations)

Baybars (1986) also defines two versions of the SALBP, namely type-1 and type-2. In SALBP-1,

the line’s cycle time is given and the objective is to minimize the number of workstations needed for

the task assignments. On the other hand, SALBP-2 is subjected to a given number of workstations

while the cycle time is the optimization focus.

Although extensions of ALBP are a growing trend on the more recent articles, the simple version

(SALBP) has been the most intensively studied ALBP in the literature (Battäıa & Dolgui, 2013).

The first two integer models for SALBP were proposed by Bowman (1960). Bowman’s first model

used unnecessary integer variables that were simplified into binary variables by White (1961). The

computational capacity at the time was not enough advanced for practical purposes. A decade later,

Thangavelu & Shetty (1971) and Patterson & Albracht (1975) developed binary models adapted

to be solved with Balas’ method (Geoffrion, 1967). Patterson & Albracht (1975) also developed a
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reduction approach to the number of variables using the problem structure, resulting in a compact

model. Scholl (1999) presents a review on the SALBP models and introduces two SALBP models:

one based on task sequencing and other whose assignment is determined by the difference of two

binary variables. More recently, Pastor & Ferrer (2009) developed a model containing restrictions

that dynamically reduced the search space as function of the incumbent solution. Their model

doesn’t require an initial upper bound, the restrictions use the intermediary solutions to cut the

search field. The several formulations for the precedence relations were discussed by Ritt & Costa

(2015), who proposed a model with a tighter precedence restriction.

SALBP formulations are extensively used among further modeling in ALBP extension using

mixed-integer solvers (Battäıa & Dolgui, 2013). For SALBP, however, problem specific heuristics,

metaheuristics, or exact methods are usually more efficient than solvers. A comparative study

between 12 solution methods of different concepts was performed by Pape (2015). Pape compared

the performance of genetic algorithm (Falkenauer & Delchambre, 1992; Sabuncuoglu et al., 2000),

differential evolutionary algorithm (Nearchou, 2005), ant colony optimization (Bautista & Pereira,

2002), tabu search (Scholl & Voss, 1997; Lapierre et al., 2006), MultiHoffman heuristic (Fleszar

& Hindi, 2003), bounded dynamic programming (Bautista & Pereira, 2009), beam search (Blum,

2008), and branch-and-bound (Scholl & Klein, 1997, 1999) for the solution of SALBP-1. The most

efficient algorithms are dedicated branch-and-bound or dynamic-programming procedures that use

the problem structure to determinate the search procedure.

Scholl & Becker (2006) presented a survey on exact and heuristic procedures highlighting the

performance of SALOME-1 (Scholl & Klein, 1997, 1999) and SALOME-2 (Klein & Scholl, 1996)

for the SALBP-1 and SALBP-2, respectively. A further development on an exact procedure for

SALBP-1 is due to Sewell & Jacobson (2012). Their Branch, Bound, and Remember Algorithm

(BB&R) solved to optimality, for the first time, all the 269 SALBP-1 instances of Scholl (1999)’s

dataset with an average of only 0.43 seconds. For SALBP-2, however, to the best knowledge of

the authors, still no exact algorithm outperforms SALOME-2 developed by Klein & Scholl (1996).

All of the models and procedures presented treat each task individually, assigning a set of

variables for each task. Assembly lines with welding procedures can, for example, present several

tasks that have similar characteristics. Figure 1, for instance, illustrates 16 tasks divided in three

groups (G1, G2, and G3). Within each group, the welding spots are performed in similar positions

and have the same function. In an ALBP with identical tasks (repeated tasks with the same

processing time and precedence relations), the problem formulation does not benefit from the fact

that many tasks can be identical and therefore can be gathered in groups of similar tasks. Here, we

propose a representation that benefits from repeated tasks to simplify the problem solving. This

way, solution methods are able to compute bigger instances of assembly line balancing problems

with these characteristics.

The paper is structured as follows. In Section 2, the definition of identical tasks is proposed,

along with the requirement for grouping tasks and their effect on the problem structure. Section

3 presents one review of a binary formulation for SALBP and the new integer variable based
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Figure 1: Representation of an automotive part to illustrate a welding procedure. The symbols

exemplify welding points. The asterisk and the filled and unfilled circles represent tasks than can

be considered identical. Within each group (G1, G2, and G3), the processing time and precedence

relations are the same for each task.

formulation modeling groups of tasks. In Section 4 computational experiments are described with

the results showing the advantages of an integer formulation. The conclusion remarks are found

in Section 5.

2. The simple assembly line with multiple identical tasks problem

Among tasks performed in an assembly line, it is possible that some operations appear as copies

of other tasks. Assembling two pieces using screws or welding operations exemplifies such cases:

the operation might require multiple screws, welding spots or beads. When procedures have the

same duration and the order they are performed is irrelevant, they can be said to be identical

tasks.

Figure 2 exemplifies a case in which 15 tasks are constituted of 5 tasks of 3 copies each. Between

each group of identical tasks, once they can be performed in any order, there aren’t precedence

relations. As a result, groups of identical tasks appear as vertical aligned tasks.

In this kind of problem, there might be several answers with identical quality. Suppose the

optimal answer requires a workstation to perform Tasks 1 and 2. Another answer could assign

Tasks 1 and 3 or 2 and 3 to that workstation, while still resulting in an optimal answer. Once

there are identical tasks, equally balanced assignments can be achieved by swapping such tasks.

In one enumerative procedure for SALBP, Jackson (1956) proposed a dominance rule to avoid

exploring station loads whose balancing quality is limited by other assignment. Jackson’s domi-

nance rule states that Task i potentially dominates Task j if ti ≥ tj , no precedence relations are

defined between them and Fi ⊇ Fj . If a partial solution of a subproblem includes a Task j in

a station, while a dominant Task i is still unassigned, the dominance rule tell us that if we can

swap the two tasks without surpassing the cycle time restriction of the problem, the subproblem

is dominated and can be left out. In the case of ti = tj and Fi = Fj , the index of the task is the
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tiebreaker: i dominates j if i < j.

All identical tasks such as presented in Fig. 2 will fall into the tiebreaker criterion. Once the

first of each group of tasks potentially dominates the others, adding precedence relations to force

its earlier assignment results in the same optimal balancing. The extra relations produces a more

restricted, but equivalent SALBP. The result of this procedure is shown in Fig. 3. Note that in

Fig. 2 the groups of tasks are organized vertically. The added precedences in Fig. 3 implies a fixed

order in which the tasks must be performed, therefore, they appear horizontally aligned.

A new equivalent integer representation is proposed here. Identical operations can be merged

in a task that must be performed multiple times. Figure 4 is the equivalent diagram showed in

Fig. 2 with the difference that this representation contains the number of copies each task has in

the upper left position of nodes. Even though the problem still has 15 tasks, its representation is

simplified when we merge identical tasks. The problem’s solution is not only the determination of

which tasks are performed in which stations, but how many tasks of a given type are performed

in each station.

Any SALBP problem can be described in such way. When no task has a copy, however, the

precedence diagram has the same length, but it must also show an additional information: each

task appears only once. This approach can only simplify the problem’s representation in the

presence of repeated tasks. In Section 3, we show an integer model suited to solve problems with

the integer representation of Figure 4.

3. Integer Assembly Line Balancing Model

In this section, we present an integer formulation to SALBP that explores the structure of a

problem with multiple identical tasks to create a compact model. While most of the models in

Section 1 use binary variables to describe whether a task is assigned to a workstation, our formula-

tion is based on integer decision variables. Instead of treating each copy of a task individually, an
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Figure 2: Precedence graph of a SALBP with multiple copies of tasks. No precedence relation

between the identical tasks is assumed, so that tasks are represented vertically aligned. The number

inside the circle is the index of each task, while their duration time is shown in the upper right

position. Tasks are ordered from left to right (pointers are omitted due to the high concentration

of arcs in the diagram).

5



1 2 3

54 6

7 8 9

10 11 12

13 14 15
5 9 9

4

9

4

2

5

4

5

27 7 27

Figure 3: Horizontal aligned equivalent precedence graph of Fig. 2. Precedence relations are used

to define an order in which the identical tasks must be performed. These assumed relations result

in the horizontal alignment of the tasks in the diagram.

integer variable is used to determine how many copies of a task are assigned to each workstation.

The formulations described in this section are used for SALBP-2 instances once the real-world

inspired case studies presented in Section 4 have a fixed number of workstations.

In Subsection 3.1, the formulation of Patterson & Albracht (1975) exemplifies the use of binary-

based variables. This model is used as a reference to introduce the integer-based model presented in

Subsection 3.2. Note that in both binary and integer formulations, due to precedence relations, not

every combination of pairs task-station are feasible allocations. For instance, tasks with several

followers cannot be allocated in the end of the line. Subsection 3.3 defines how the set FTA

(Feasible Task Allocations), firstly described by Patterson & Albracht (1975), is used to eliminate

variables that would result in impossible allocations along with the integer formulation modification

for the set.

3.1. Binary Approach Model

Although the Patterson & Albracht’s original model is described for SALBP-1, due to the

conditions of the case study, we describe a SALBP-2 adaptation. The variables are defined as:

CT : cycle time

xij :

1, if task i is assigned to station j

0, otherwise

∀(i, j) ∈ FTA

The adapted objective function is set to minimize CT . The model is subjected to the following
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Figure 4: Equivalent precedence graph of Fig. 2 with merged multiple identical tasks. This diagram

doesn’t represent every task individually, but as groups of tasks. The representation also contains

the number of copies each task has in the upper left position.
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constraints: ∑
(i,j)∈FTA

xij · ti ≤ CT ∀ j = 1, ...,M (1)

∑
(i,j)∈FTA

xij = 1 ∀ i = 1, ..., N (2)

∑
(i,k)∈FTA

k · xik ≤
∑

(j,k)∈FTA

k · xjk ∀ (i, j) ∈ A (3)

xij = {0, 1} ∀ (i, j) ∈ FTA (4)

In assembly lines, the processing time of each station is the sum of the time spent on each

task. The most loaded station is the bottleneck, determining the cycle time of the line (Constraint

1). The balancing is performed assigning all tasks to workstations. The Occurrence Constraint 2

along with the Integrality Constraint 4 assure each task is allocated to a single station. Finally, the

precedence relations are implemented through Constraint 3, which forces followers to be allocated

not before their predecessors.

Alternative formulations for the precedence relations were proposed in the literature (Bowman,

1960; Thangavelu & Shetty, 1971; Scholl, 1999; Ritt & Costa, 2015). We mention the constraint

proposed by Bowman (1960) and improved by White (1961) in Constraint 5. Although this for-

mulation requires more restrictions, they only use 0 or 1 as coefficients. Such values are important

for the integer formulation of Subsection 3.2.

xjl ≤
∑

(i,k)∈FTA
k≤l

xik ∀ (i, j) ∈ A, (j, l) ∈ FTA (5)

3.2. Integer Approach Model

In this formulation, we define decision variables for each existent type of task. Replicas of a

task are treated in a single integer variable. Instead of determining whether a task is assigned to

a station, this model’s variables decide how many copies of each task are assigned to each station.

This way, lines with repeated tasks can be modeled using fewer variables than the binary based

model of Section 3.1. The integer formulation uses the following extra parameters to define an

instance:

ni : number of copies of task i

nmaxij : maximal number of copies of task i that can be allocated in station j

The model variables are defined as:

CT : cycle time

zij : number of tasks i assigned to station j

yij :

1, if all tasks i are completed by stations up to j

0, otherwise

(i, j) ∈ FTA
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While the integer decision variable (zij) results in the allocation of tasks, yij is used as a

support variable in the precedence relations. This variable indicates whether a task i is completed

until station j, i.e., all its copies are assigned at station j or before. The objective function is to

minimize CT , subjected to the following constraints:∑
(i,j)∈FTA

zij · ti ≤ CT ∀ j = 1, ...,M (6)

∑
(i,j)∈FTA

zij = ni ∀ i = 1, ..., N (7)

zjk ≤ yik · nj ∀ (i, j) ∈ A, (i, k) and (j, k) ∈ FTA (8)

yij ≤
∑

(i,k)∈FTA
k≤j

zik
ni

∀ (i, j) ∈ FTA (9a)

yij + ni − 1 ≥
∑

(i,k)∈FTA
k≤j

zik ∀ (i, j) ∈ FTA (9b)

yij = {0, 1} ∀(i, j) ∈ FTA (10)

zij =
{

0, 1, ..., nmaxij

}
∀(i, j) ∈ FTA (11)

Inequality 6, the cycle time constraint, is identical to the binary Inequality 1. The Occurrence

Restriction 7 only differs in terms of the number of copies that should be assigned. While the

binary model allocates every task individually, the sum of all assignments in the integer model

must be equal to the number of copies. Inequalities 8 and 9 are responsible for the precedence

relations. These constraints are derived from Constraint 5: xjl can only assume 1 if any xik is

also 1 for k ≤ l. For the integer model, however, the assignment condition is that all copies of

a precedent task must be assigned before the assignment of a follower task. The right side of

Inequality 8 needs yik as a support variable. According to Constraint 9a, yij can only assume the

value 1, and therefore allow followers to be assigned, if all replicas of zi are assigned up to station j.

Constraint 9b forces yij to assume 1 in this condition, but this restriction is not necessary for the

modeling of precedence relations. Once this extra restriction represented computational gains in

some instances, the model used also included Restriction 9b in all the experimental tests. Finally,

the Integrality Constraints 10 and 11 forces yij and zij to assume discrete values. Along with only

allowing an integer number of copies to be assigned to a station, Constraint 11 also presents an

upper bound for the number of copies that can be assigned. This upper bound value is further

discussed in Subsection 3.3.

3.3. Variable set reduction

For both models, variables are only defined when they are part of the set FTA. This set uses

the precedence relations to exclude task assignments that are proven to be unfeasible. FTA is built
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based on the earliest and latest station a task can be allocated. For the binary model, according to

Patterson & Albracht (1975), the earliest station for a task i can be calculated by adding the time

of all tasks that precede i (P ∗i ) divided by the cycle time. The ratio measures how many stations at

least have to be filled in order to the predecessors of i are all assigned, Equation 12. Once stations’

indexes are integer values, the ceiling function is used. Analogously, Li is calculated based on the

duration times of the successors (F ∗i ), Equation 13. FTA is defined as all the task-station pairs

in which the stations are within the interval between the earliest and latest stations, according to

Equation 14. For SALBP-2 instances, an upper bound for the cycle time should be used.

Ei =

⌈
ti +

∑
j∈P∗

i
tj

CT

⌉
∀ i = 1, ..., N (12)

Li = M − 1 +

⌈
ti +

∑
j∈F∗

i
tj

CT

⌉
∀ i = 1, ..., N (13)

FTA =
{

(i, j) : j = Ei, ..., Li

}
∀ i = 1, ..., N (14)

Equations 15 and 16 are the proposed integer adaptation of the reduction strategy. These

expressions also consider the number of copies of each task. Note that the bounds are slightly

softer for the integer formulation. E∗i , in the integer formulation, means that at least one copy

of task i can be allocated in such station, but not necessarily all the copies. This bound can be

strengthened by also defining an upper bound of the number of copies that can be assigned to a

station.

E∗i =

⌈
ti +

∑
j∈P∗

i
tj · nj

CT

⌉
∀ i = 1, ..., N (15)

L∗i = M − 1 +

⌈
ti +

∑
j∈F∗

i
tj · nj

CT

⌉
∀ i = 1, ..., N (16)

The maximal amount of task’s copies can be also determined by counting the duration time of

predecessors and successors. The theoretical amount of copies of task i that can be allocated in or

before (after) station j is defined as nBij (nAij ). These values are used to calculate the maximal

number of copies that can be allocated in each station nmaxij
. In Equation 17, nBij

is defined as

the amount of copies that can be fit in a station after the processing time of all its predecessors

are considered. Similarly, Equation 18 defines nAij based on the follower tasks.

The upper bound for the number of copies of task i in station j (nmaxij ) is defined in the

interval [E∗i ;L∗i ]. This bound is determined by the minimal value between the number of available

copies of the task (ni), the amount of tasks an empty station can support
⌊
CT
ti

⌋
, and the amount of

tasks that fit in the station when one also considers the predecessors (nBij ) and successors (nAij ),

as seem in Equation 19.

nBij =

⌊
j · CT −

∑
P∗

i
nk · tk

ti

⌋
(17)

nAij =

⌊
(M + 1− j) · CT −

∑
F∗

i
nk · tk

ti

⌋
(18)

nmaxij
= min

(
ni,

⌊
CT

ti

⌋
, nBij

, nAij

)
(19)
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An example of the use of the earliest and latest stations can be seen in Table 1. The table shows

the FTA set for the instances represented in Figures 2-4. Note that the Binary-Vertical’s (Fig. 2)

tasks have the most assignment possibilities. The ordering of identical tasks performed to create

the Binary-Horizontal (Fig. 3) instance reduces the assignment possibilities, once more precedence

relations are considered. The FTA set for the integer instance is identical to the Binary-Vertical

(Bin-V) set. With the information of nmaxij , however, the variable reduction presents the same

information of the Binary-Horizontal (Bin-H) problem. Tasks 1 and 2, for example, can only be

assigned to the first station for the Binary-H instance while Task 3 would fit in either station 1 or

2. The same information is given in the Integer instance (Int) by allowing at most 3 copies of Task

1 in Station 1 (Binary Tasks 1, 2, and 3) and 1 copy in Station 2 (Binary Task 3).

Table 1: Feasible Task Allocations (FTA) for the precedence diagram of Figures 2, 3, and 4 using

the equations 12-16 and 25 as an estimative to CT . For the binary instances, an “x” represent a

feasible assignment for a task in a station. For the integer instance, feasible task-station allocations

are represented by cells containing numbers. Those numbers represent the maximal number of

copies that can be assigned to each station (nmaxij
).

Tasks

Instance Stations 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Bin-V

1 x x x x x x x x x

2 x x x x x x x x x x x x

3 x x x x x x x x x x x x

4 x x x

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Bin-H

1 x x x x x x

2 x x x x x x x x x x

3 x x x x x x x x x x

4 x x

1 2 3 4 5

Int

1 3 1 2

2 1 3 3 3

3 2 3 3 2

4 2

4. Computational Experiments

This section explores the differences in performance of the binary and integer formulations

on a series of tests based on benchmark and real inspired instances. Both integer and binary

formulations were implemented on a state-of-the-art universal solver. The tests were solved on a

2.3 GHz, Intel i7-3610 QM, computer with 16.0 GB of RAM. A specialized algorithm was also

used in order to have a performance reference. As reported by the comparative study of Pape

(2015), and the survey from Scholl & Becker (2006), branch-and-bound procedures that base

the search procedure on the problem structure are among the best solution methods for solving

SALBP. Out of the available alternatives, SALOME is the best procedure capable of directly

solving the type-2 problem. Therefore, a version of SALOME-2 (Klein & Scholl, 1996), obtained

10



in http://www.assembly-line-balancing.de, was used for the comparison.

As seen in Section 2, a SALBP instance with multiple identical tasks can be simplified by

applying Jackson’s dominance rule. For the binary-based formulation, both variants are tested:

problems with no precedence relations between identical tasks as well as one with a fixed order of

assignment were created from each problem. The variations with no extra precedence relations, as

exemplified in Fig. 2, are named Binary-Vertical (Bin-V ) case, while the cases based on Fig. 3

are called Binary-Horizontal (Bin-H ).

Three sets of instances are proposed to test the formulations performance. Subsection 4.1

presents 9 precedence diagrams from the standard dataset from Scholl (1999) that are adapted to

create instances with multiple identical tasks. In Subsection 4.2, the effect of the number of copies

is tested with 121 instances of 2 precedence diagrams ranging from 1 copy of each task to enough

copies to result in a problem with up to 1000 tasks. Three instances inspired in a real spot welding

line are described in are described in Subsection 4.3 and a review on the model’s characteristics

and results is shown in Subsection 4.4.

4.1. Adapted Standard Dataset

The welding operations observed by the authors in real automobile assembly lines presented

tasks ranging from a single operation up to 50 identical welding points. The average number of

identical tasks in observed vehicles is between the interval from 7 to 12 copies. For the given study,

the generated instances are created with 10 copies of each task. In order to create a dataset with

instances that are similar in size to Scholl’s benchmark, 9 precedence diagrams are adapted to the

225 instances used in the test. Table 2 summarizes the precedence diagrams used, the number of

tasks of each instance and the range of stations used for each case.

Table 2: Selected instances of Scholl’s benchmark. Each problem was adapted so that every task

presents 10 copies. The problems range from 70 to 350 tasks.

Instances Tasks Range of Stations

Bowman 80 4 - 16

Gunther 350 17 - 50

Jackson 110 5 - 22

Jaeschke 90 4 - 18

Heskia 280 14 - 56

Mansoor 110 5 - 22

Mertens 70 3 - 14

Mitchell 210 10 - 42

Roszieg 250 12 - 50

The tests are performed with a time limit of 300 seconds using both the universal solver and

SALOME-2. The integer formulation (Subsection 3.2) is represented by Int-Model, while Bin-H

Model and Bin-V Model represents Patterson & Albracht (1975) formulation applied to Binary-

Horizontal (e.g. Figure 3) and Binary-Vertical (e.g. Figure 2) versions of the instance, respectively.

Both binary instances are also solved using SALOME and are represented by SALOME-H and

SALOME-V. For the cases solved with the presented model (Subsections 4.1 - 4.3), a sample run
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with 15 seconds of processing was used as an upper bound for the cycle time in the variable set

reduction presented on Subsection 3.3.

Table 3 summarizes the results. The horizontal and vertical forms of organizing the task

copies presented considerable influence in the algorithms’ performance. Even thought SALOME

uses dominance rules, the two variations of the problems are not identical. The algorithm might

still compare several equally good partly solutions when identical tasks don’t present precedence

relations between them (for Binary-Vertical alignment). On the other hand, the binary formulation

solved by the universal solver showed an opposite trend. The mixed-integer linear programming

method of resolution used in the solver seemed to evaluate better the identical solutions and reached

superior answers for the Bin-V cases (see columns #OF and #OP ). Fixing an operation order

produces a more restricted problem and, therefore, resulted in instances in which the binary model

was unable even to find a feasible integer solution, indicated in column #Fail.

Table 3: Computational results for the 225 adapted instances of Section 4.1. #OF stands for the

number of optimum found, #OP for the optimum proven, #Fail the number of instances without

a feasible solution found. The average deviation from optimum is shown in ∅dev. column, while

∅Time accounts for the average processing time. Time was assumed to be equal to the time limit

(300 seconds) when a fail occurred.

Cases #OF #OP #Fail ∅dev. ∅Time(s)

SALOME-H 219 218 0 0.079% 10.6

SALOME-V 203 200 0 0.287% 41.0

Int-Model 189 186 0 0.196% 58.7

Bin-H Model 76 71 68 54.76% 212.8

Bin-V Model 125 94 0 16.13% 185.4

The integer formulation brought significant improvement in the number of optimal solutions

found when compared to the binary models. With the time limit of 5 minutes, the integer model was

able to prove optimality of almost twice as much as the best of the binary formulations (column

#OP , 186 versus 94), while reducing relative deviation from optimal from 16.13% (Bin-V) or

54.76% (Bin-H) to just 0.196%. Although the integer model, for this testbed, was inferior than

SALOME’s performance, the results were more similar to SALOME than the binary formulations.

It is important to highlight that the Integer Model is solved by a general purpose solver, while

SALOME is a specialized algorithm for this kind of problem.

4.2. Effect of the Number of Copies

To study the formulations’ performance influenced by the number of copies of each task, two

precedence diagrams from the dataset of Scholl (1999) were chosen. Both Mansoor and Lutz1 cases

present few tasks, allowing a big varieties of number of copies to be tested, while their solution

still proved to be challenging. The maximal number of copies was determined by SALOME’s limit

of 1000 tasks. Mansoor’s precedence diagram contains 11 tasks, resulting in 90 instances ranging

from 1 to 90 copies up to 990 tasks, while Lutz1’s diagram (32 tasks) resulted in instances from 1

to 31 copies.
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The number of workstations used for each instance is calculated by Equation 20. A function of

the number of copies (NC) is used to determine an adequate number of stations (NS) to create

challenging instances, as indicated in Tables 4 and 5. For the Mansoor’s cases the coefficient NS0

is set to 3, while NS0 = 7 for the Lutz1’s problems.

NS =
⌈
NS0 ·NC(3/4)

⌉
(20)

The results are presented in Tables 4 and 5. The instances are grouped according to the number

of copies of each task in 6 intervals. For instance, in Table 4 the intervals are 01 to 15 copies, 16 to

30 copies, and so on. The output data presented is the sum for the time limit of 3,600 seconds. For

both cases, SALOME-H proved more optimal answers (#OP ) than the other methods: 77 out of

90 for Mansoor’s diagram and 13 out of 31 for Lutz1’s problems. The performance of SALOME-V,

however, was greatly inferior without the preordering of identical tasks: only 27 (21+6) out of the

121 (90+31) instances had optimal proved solutions. For the instances solved with the universal

solver, only the integer formulation was able to give reasonable results. The integer formulation

proved 52 out of the 121 instances, a result between the performance levels of SALOME-H and

SALOME-V. The binary formulations using the solver underperformed greatly the results of the

other methods; only the very small instances were solved to optimality.

Table 4: Results obtained for the Mansoor’s precedence diagram. The instances are separated

by the number of copies. The methods’ results are separated by slashes in the order: SALOME-

H/SALOME-V/Int-Model/Bin-H Model/Bin-V Model. Each line represents the sum of 15 in-

stances. The number of instances whose optimality has been proven for up to 3,600 seconds of

processing is displayed in column #OP. The #BF (Best incumbent Found) column represents for

how many instances which method obtained the best solution. The sum of the difference of the

answer obtained and the best result is displayed in the #Abs. Dev. (Absolute Deviation) column.

The solver was not able to get an integer solution for all cases of Bin-H Model. The number of

instances considered in the sum are shown between brackets. The last column shows the amount

of time each method processed the instances.

Instances #OP #BF #Abs Dev. Total Time

MANSOOR 01-15 15/15/15/4/4 15/15/15/8/14 0/0/0/49(13)/1 0.06/1,148/22.6/39,601/41,690

MANSOOR 16-30 15/2/8/0/0 15/2/10/0/6 0/52/9/-(0)/33 29.8/46,800/25,364/54,000/54,000

MANSOOR 31-45 15/0/8/0/0 15/1/10/0/3 0/75/6/4,240(6)/467 2,431/54,000/26,131/54,000/54,000

MANSOOR 46-60 15/4/12/0/0 15/5/12/0/0 0/117/3/12,977(14)/4,722 2.0/39,686/11,039/54,000/54,000

MANSOOR 61-75 7/0/0/0/0 11/1/7/0/0 7/84/14/9,705(11)/4,441 38,119/54,000/54,000/54,000/54,000

MANSOOR 76-90 10/0/6/0/0 10/2/11/0/0 14/80/5/15,236(15)/12,232 18,070/54,000/32,959/54,000/54,000

MANSOOR 01-90 77/21/49/4/4 81/26/65/8/23

Once several instances were not solved within the time limit, the amount of best answers found

from each method (#BF ) and the difference of the incumbent found to the best (#Abs.Dev)

are also represented in the tables. For the Mansoor’s instances, SALOME-H still found most of

the best answers (81 out of 90), followed by Int-Model (65 out of 90) and SALOME-V (26 out

of 90). In Lutz1’s cases, however, the Int-Model reached the best answers in 17 of the 31 cases,
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Table 5: Results obtained for the Lutz1’s precedence diagram. The methods’ results are separated

by slashes in the order: SALOME-H/SALOME-V/Int-Model/ Bin-H Model/Bin-V Model. The

table is organized in the same manner as Table 4. The instances are grouped in set of 5 or 6.

Instances #OP #BF #Abs Dev. Total Time

LUTZ1 01-05 5/5/3/2/1 5/5/3/3/3 0/0/38/26(5)/34 1.0/11.9/10,968/14,111/14,400

LUTZ1 06-10 5/1/0/0/0 5/1/0/0/0 0/378/156/370(4)/142 1,682/14,574/18,000/18,000/18,000

LUTZ1 11-15 3/0/0/0/0 4/0/0/0/1 6/552/192/-(0)/262 12,227/18,000/18,000/18,000/18,000

LUTZ1 16-20 0/0/0/0/0 1/0/4/0/0 207/489/1/-(0)/3,775 18,000/18,000/18,000/18,000/18,000

LUTZ1 21-25 0/0/0/0/0 1/0/4/0/0 155/391/28/-(0)/17,258 18,000/18,000/18,000/18,000/18,000

LUTZ1 26-31 0/0/0/0/0 0/0/6/0/0 334/703/0/-(0)/279,812 21,600/21,600/21,600/21,600/21,600

LUTZ1 01-31 13/6/3/2/1 16/6/17/3/4

while SALOME-H obtained 16 of the best answers and SALOME-V only 6. The individual results

for each instance can be observed in Figure 5 for Mansoor’s diagram and Figure 6 for Lutz1’s

diagram. Note that for most of the cases, the Int-Model found better answers than SALOME-V

but it is outperformed by SALOME-H for the small instances. For the bigger instances, however,

the integer formulation was able to found better answers within the time limit.

Once SALOME is a SALBP dedicated algorithm, its performance is expected to be far superior

than one of a universal solver. Although it is the case for the binary formulations solved with the

solver, the integer formulation produced competitive results in terms of solution quality, especially

for the largest instances.

Figure 5: Absolute deviation from the best answer found from each of the methods for Mansoor’s

instances. Bin-H Model and Bin-V Model’s deviations are not shown due to the scale of the graph.

4.3. Real World Instances

In this section three case studies based on real body welding lines are presented. Two product

models with 241 and 248 tasks are produced in a line using 26 robotic workers, while the third

model uses 28 robots to distribute its 312 welding points.

The Figure 7 shows the precedence diagram of the process. Each node represents one type of

task and the diagram is the same for all three models. The products differ only in the number of
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Figure 6: Absolute deviation from the best answer found from each of the methods for Lutz1’s

instances. Bin-H Model and Bin-V Model’s deviations are not shown due to the scale of the graph.

copies and the processing time of each task. The welding spots are performed either to assemble

pieces or to reinforce the structure. Structure reinforcements are independent from each other

and therefore do not need precedence relations (Tasks 4-9, 12-15, 18, 21-23). Welding spots used

to unite parts (Tasks 1-3, 10-11, 16-17, and 19-20), on the other hand, must be performed in a

specific order. Furthermore, the extra parts may block the access of the robots to reinforcement

spots. The precedence diagram is then shaped as alternating blocks of piece jointing procedures

and blocks of reinforcement procedures that must be performed before their accessibility is lost.

Figures 1 and 8 exemplify how the precedence relations are formed. In Figure 1, the filled

circles (G1) represent Task 12, the unfilled circles (G2) exemplify Task 16, and the asterisks (G3)

stand for Task 18. The group G2 is also present in Part 2 (Figure 8a) once it represents the union

procedures of the two parts. After the parts are assembled, Task 12 is not accessible anymore, as

it can be seen in Figure 8b. Therefore, a precedence relation between task 12 and 16 is defined.

Task 18 on the other hand, is not blocked by Part 2, so that no precedence relation between Tasks

12 and 18 is defined.

The number of copies and the processing time of each task is summarized in Table 6. Along

with the precedence diagram of Figure 7, they define the three proposed case studies. The time

required for a welding spot is almost constant. The gun movement, however, causes most of the

processing time differences. Tasks with similar accesses were gathered in a single type of task.

Their processing time is given as an approximation of the time a robot takes to reach the correct

position and perform the operation.

Binary versions of the instances were created both for the horizontal and vertical variants.

Table 7 contains the results with a processing limit of 60 seconds comparing the integer formulation

to SALOME, while 3,600 seconds was used as a limit for the results in Table 8. For all cases, the

integer formulation provided better results. Two of the three case studies were solved with a short
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Figure 7: Precedence diagram for the three real-world inspired case studies. To reduce the number

of arcs representing precedence relations, intermediary black points are used in the representation.

When these points are used, all tasks linked to them precede all tasks they are pointed at. For

instance, node 2 precedes nodes 4 to 9.

o  o  o  o  o  o  o  o  o

(a) Part 2 to be assembled to the Part 1 of Figure 1.

o  o  o  o  o  o  o  o  oo  o  o  o  o  o  o  o  o

(b) Assembled parts.

Figure 8: Representation of the parts assembled by the assembly line in the case study (Figure 1

and 8a). The asterisks and circles represent welding points. Note that after the assemblage, some

points of Part 1 became inaccessible to further welding procedures.
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Table 6: Number of copies and processing time of each task copy in normalized time units for each

case study. Note that not every task of the precedence diagram of Figure 7 is present in every

model.

Model 1 Model 2 Model 3

Task Copies Time Copies Time Copies Time

1 8 57 8 57 8 57

2 6 38 6 38 6 38

3 6 50 6 50 6 50

4 6 47 4 49 10 42

5 10 29 10 29 20 27

6 14 58 10 57 6 55

7 18 40 18 40 22 43

8 4 47 4 47 8 43

9 4 63 4 63 2 64

10 15 63 15 63 15 63

11 13 39 13 39 13 39

12 7 42 11 38 11 38

13 34 35 46 34 40 37

14 21 70 18 71 37 77

15 11 28 7 26 13 21

16 15 69 15 69 16 71

17 5 44 5 44 8 45

18 0 - 0 - 12 37

19 20 34 6 35 18 32

20 0 - 12 50 4 52

21 12 35 12 35 14 33

22 12 55 12 55 12 51

23 0 - 6 56 11 52

Total 241 11,257 248 11,575 312 14,534
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processing time (13.5 and 99.3 seconds) while the best bounds for the Model 1 were obtained by

the integer formulation. Again, this formulation simplifies the problem, allowing a universal solver

to compete with SALOME for problems with repetitive tasks.

Table 7: Results obtained by the integer formulation and SALOME with a limit of 60 seconds of

processing. Values between brackets represent the best incumbent solution found on the right side

and the lower bound on the left side.

Int-Model SALOME Bin-H SALOME Bin-V

Model Time (s) Solution Time (s) Solution Time (s) Solution

1 60 [437;440] 60 [433;447] 60 [433;440]

2 13.5 451 60 [446;453] 60 [446;453]

3 60 [520;521] 60 [520;527] 60 [520;521]

Table 8: Results obtained by the integer formulation and SALOME with a limit of 3,600 seconds

of processing. Values between brackets represent the best incumbent solution found on the right

side and the lower bound on the left side.

Int-Model SALOME Bin-H SALOME Bin-V

Model Time (s) Solution Time (s) Solution Time (s) Solution

1 3,600 [437;440] 3,600 [433;447] 3,600 [433;440]

2 13.5 451 2,305.1 451 3,600 [446;453]

3 99.3 521 3,600 [520;527] 3,600 [520;521]

4.4. Formulation’s discussion

The integer formulation allows the representation of groups of tasks instead of treating every

one individually. This concept allows the use of fewer variables when identical tasks are present.

The differences in terms of the number of variables and restrictions of the integer and binary

formulations for the real-world inspired instances are showed in Table 9. The integer formulation

possesses one integer variable and one binary variable for each type of task, resulting in fewer

variables and restrictions when compared to the binary models. Note that the Binary-Vertical

formulation has much more restrictions than the Binary-Horizontal formulation. The Binary-

Vertical instance has several direct precedence relations, which result in several restrictions. The

extra precedence relations added to order the identical tasks in the Binary-Vertical formulation

results in a diagram with fewer direct precedence relations, transforming a great number of them

in indirect relations. The effect of the variable set reduction (subsection 3.3) can be observed

comparing Tables 9 and 10.

As the amount of copies of tasks increases, the number of variables of the binary models

tend to increase linearly. On the other hand, the variable set’s size of the integer model remains

somewhat constant: a new copy, instead of creating new variables, just increases the upper bound

integer variables can assume. Although models with integer variables tend to be difficult to solve

(Williams, 2009), for the instances presented here, the integer formulation has substantially fewer

variables, resulting in a performance comparable to SALOME.
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Table 9: Number of variables and restrictions of the integer, binary-horizontal and binary-vertical

for the three case studies of Subsection 4.3. The last row contains the upper bound for the cycle

time used in the variable set reduction. Half of the variables of the integer formulation is integer.

For the binary formulations, only CT is an integer variable.

With Reduction Model 1 Model 2 Model 3

Integer Form.
Variables 233 243 315

Restrictions 456 473 622

Binary-H
Variables 1,205 1,578 1,866

Restrictions 1,606 2,038 2,380

Binary-V
Variables 1,515 1,932 2,465

Restrictions 42,359 55,068 75,632

Upper Bound for CT 447 453 527

Table 10: Number of variables and restrictions of the integer, binary-horizontal and binary-vertical

for the three case studies of Subsection 4.3 without the variable set reduction.

Without Reduction Model 1 Model 2 Model 3

Integer Form.
Variables 1,041 1,145 1,289

Restrictions 2,906 3,168 3,607

Binary-H
Variables 6,267 6,449 8,737

Restrictions 7,313 7,554 10,056

Binary-V
Variables 6,267 6,449 8,737

Restrictions 183,099 189,866 291,540

5. Conclusion

Identical or repetitive tasks are frequently present in assembly lines that welds parts or fixes

components with screws. When considered individually, a pre-ordering can be applied to the

identical tasks to simplify the problem. In this paper, an integer formulation is proposed to gather

identical tasks and treat them as a group. One integer decision variable per task group is used

to determine how many copies of a task are assigned to a workstation instead of using one binary

variable for each copy.

The integer and binary formulations were tested using both adapted SALBP-2 instances from a

standard dataset and real-world inspired cases of an auto manufacturer company. Using a universal

solver, the integer formulation outperformed the binary formulation of Patterson & Albracht (1975)

for the vast majority of instances tested. When compared to SALOME (Klein & Scholl, 1996),

a specific algorithm designed for SALBP, the integer formulation solved using a generic solver

presented results in the same magnitude. No clear dominance between the two methods can be

inferred. SALOME solved preordered instances with a shorter processing time and proved the

optimality of more instances of the benchmark. The implemented integer formulation was able

to find the best answers and bounds for several of the instances with a high number of tasks,

including the real-world inspired cases. Although a mixed-integer linear programming solver is not

dedicated to SALBP, it showed itself competitive along with the integer formulation when several

identical tasks are present. This fact shows that the capability of solving SALBP problems using

the proposed formulation is enhanced and therefore larger instances can be solved.
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The use of integer variables for the simplified representation of identical tasks can be integrated

in other solving methods and is not restricted to SALBP models. The advantages of the integer

formulation can be extended to further assembly line balancing problems with different charac-

teristics. Furthermore, an hybrid model using either integer or binary variables depending on the

number of copies of a task can result in even more compact and efficient formulations.
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