

A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem

Accepted Manuscript

A Benders’ decomposition algorithm with combinatorial cuts for the
multi-manned assembly line balancing problem

Adalberto Sato Michels, Thiago Cantos Lopes,
Celso Gustavo Stall Sikora, Leandro Magatão

PII: S0377-2217(19)30384-4
DOI: https://doi.org/10.1016/j.ejor.2019.05.001
Reference: EOR 15799

To appear in: European Journal of Operational Research

Received date: 21 September 2018
Revised date: 1 May 2019
Accepted date: 1 May 2019

Please cite this article as: Adalberto Sato Michels, Thiago Cantos Lopes, Celso Gustavo Stall Sikora,
Leandro Magatão, A Benders’ decomposition algorithm with combinatorial cuts for the multi-
manned assembly line balancing problem, European Journal of Operational Research (2019), doi:
https://doi.org/10.1016/j.ejor.2019.05.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ejor.2019.05.001
https://doi.org/10.1016/j.ejor.2019.05.001
Sikora
Texteingabe
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Sikora
Keinen von Sikora festgelegt

Sikora
Akzeptiert von Sikora festgelegt

Sikora
Keinen von Sikora festgelegt

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• The Multi-manned Assembly Line Balancing Problems is studied and solved

• Strong symmetry break constraints are implemented in a new mixed-integer formulation

• A Benders’ decomposition algorithm is proposed to solve medium and large-size cases

• The proposed algorithm solved 117 out of 131 instances of the benchmark to optimality

• Compared to previously presented methods, 44 new best solutions were reached

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Benders’ decomposition algorithm with combinatorial cuts for the
multi-manned assembly line balancing problem

Adalberto Sato Michelsa , Thiago Cantos Lopesa , Celso Gustavo Stall Sikoraa,b , Leandro Magatãoa∗

a: Graduate Program in Electrical and Computer Engineering (CPGEI)

Federal University of Technology – Paraná (UTFPR), Curitiba, Brazil

b: Institute for Operations Research, Hamburg Business School

University of Hamburg, Hamburg, Germany

Abstract

Multi-manned assembly lines are commonly found in industries that manufacture large-size prod-

ucts (e.g. automotive industry), in which multiple workers are assigned to the same station in order to

perform different operations simultaneously on the same product. Although the balancing problem of

multi-manned assembly lines had been modelled before, the previously presented exact mathematical

formulations are only able to solve few small-size instances, while larger cases are solved by heuristics

or metaheuristics that do not guarantee optimality. This work presents a new Mixed-Integer Linear

Programming model with strong symmetry break constraints and decomposes the original problem

into a new Benders’ Decomposition Algorithm to solve large instances optimally. The proposed model

minimises the total number of workers along the line and the number of opened stations as weighted

primary and secondary objectives, respectively. Besides, feasibility cuts and symmetry break con-

straints based on combinatorial Benders’ cuts and model’s parameters are applied as lazy constraints

to reduce search-space by eliminating infeasible sets of allocations. Tests on a literature dataset have

shown that the proposed mathematical model outperforms previously developed formulations in both

solution quality and computational processing time for small-size instances. Moreover, the proposed

Benders’ Decomposition Algorithm yielded 117 optimal results out of a 131-instances dataset. Com-

pared to previously presented methods, this translates to 19 and 25 new best solutions reached for

medium and large-size instances, respectively, of which 19 and 23 are optimal solutions.

Keywords: Combinatorial optimisation; Multi-manned assembly line balancing; Benders’

decomposition; Combinatorial Benders’ cuts; Mixed-integer linear programming

1. Introduction

Production systems used in high-volume industries of standardised products are frequently based

on flow-shop layouts, which are product-oriented designs. Assembly lines in a flow-shop configuration

are generally dedicated to make homogeneous products, enabling their mass production. Along with

∗Corresponding author
Email address: magatao@utfpr.edu.br (Leandro Magatãoa)

Preprint submitted to European Journal of Operational Research May 6, 2019

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

this real-world usage, assembly lines have given rise to a combinatorial problem widely discussed in

the literature (Battäıa & Dolgui, 2013): the Assembly Line Balancing Problem (ALBP).

Considering several restrictive assumptions described by Baybars (1986), the problem of assigning

a list of tasks subjected by a precedence graph to stations is called Simple Assembly Line Balancing

Problem (SALBP). Allowing only one worker in each station is one of the restrictions. Moreover,

these stations are organised in a straight, serial line that produces a unique model of a single product.

The importance of ALBP is shown in the literature by the high number of published papers that still

contribute to practical applications. In order to optimise (minimise) the number of stations (SALBP-

1) or the cycle time (SALBP-2), several algorithmic solution methods were proposed: SALOME – an

efficient bidirectional branch-and-bound procedure – was developed (Scholl & Klein, 1997) followed

by a dynamic programming approach (Bautista & Pereira, 2009), a branch, bound, and remember

algorithm (Sewell & Jacobson, 2012), and an enhanced multi-Hoffmann heuristic (Sternatz, 2014).

These and other techniques were gathered in an overview and improved for SALBP-1 by Pape (2015).

However, assembly lines applied to automotive industry, for instance, commonly process large-size

products, such as cars and buses. In these lines, the SALBP’s hypothesis of allowing only one worker

in each station often is not a practical limitation. As product size is rather large, it becomes admissible

to assign more than one worker to each station and perform tasks simultaneously in different sectors

of the same product, giving rise to natural extensions and more generalised versions of the SALBP:

the Multi-manned Assembly Line Balancing Problem (MALBP) and the Two-sided Assembly Line

Balancing Problem (TALBP), which are surveyed by Becker & Scholl (2006) along with a variety of

practical extensions. Figure 1 depicts both above-mentioned lines, it shows simple, two-sided, and

multi-manned assembly lines with three stations each. Nevertheless, two-sided and multi-manned

assembly lines permit more than one worker in each station (i.e. stations 1 and 3), with workers

performing tasks on the same product at the same time. The main difference between MALBP and

TALBP is the flexibility on the quantity of workers and their positioning. TALBP allows at most

two operators, each of them at the station’s right or left side, whereas in MALBPs the number of

maximum workers depends on product’s attributes, such as size, structure, and tasks’ precedence

relations. Another divergence is that TALBPs might have to deal with tasks that can be performed

exclusively on the right or left side of the product.

This work focuses on the MALBP variant; advantages of using the multi-manned configuration are

associated to workforce and line length reduction, which are further exemplified in Section 2. Other

simplification hypotheses from SALBP are kept, the most important ones to be mentioned are: (i) a

straight, serial line is considered and (ii) the line produces a unique model of a single product.

In industrial environments, the use of multi-operated stations is intense. Consequently, numerous

studies concerning MALBPs and TALBPs have recently been elaborated. To the best of the authors’

knowledge, the Parallel Assignment Method (PAM) developed by Akagi et al. (1983) takes place as the

first study in the literature to tackle the problem of achieving higher production rates in assembly lines

with more than one worker in each station. Many years later, Dimitriadis (2006) proposed a heuristic

method based on modifying a procedure created by Hoffmann (1963). The heuristic has shown to be

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Station 1 Station 3

Simple assembly line

Multi-manned assembly line

Two-sided assembly line

Station 2

Figure 1: Configuration examples of a simple assembly line, a two-sided assembly line, and a multi-manned assembly

line.

effective in enhancing space utilisation, with the objective of minimising the total number of workers

and stations given a cycle time, which is still the most usual goal function employed in various works.

Succeeding those papers, Becker & Scholl (2009) introduced the Assembly Line Balancing Problem

with Variable Workplaces (VWALBP). In this problem, working areas are minimised given a cycle

time, while work-pieces are divided into mounting positions and only a single worker is able to assemble

them in each multi-manned station. A Mixed-Integer Linear Programming (MILP) model is generated

including lower bounding techniques and a branch-and-bound algorithm named VWSolver (based on

SALOME) is implemented to solve larger instances. Concomitantly, two-sided assembly lines were

firstly explored by Bartholdi (1993), and its variants concerning mixed-model lines (Özcan & Toklu,

2009) and stochastic task times (Özcan, 2010) were further developed.

Following those publications, works on MALBPs have been increasing yearly; Moon et al. (2009)

included the feature of variably skilled workers into MALBPs, proposed a mathematical formulation,

and solved large-size instances with a Genetic Algorithm (GA). Cevikcan et al. (2009) devised the

application of multi-manned stations for mixed-model assembly lines with zoning constraints. Due to

the complexity of the mathematical model, a five-phase heuristic was developed to solve it. However,

none of them used exact algorithms, and their adopted methods would find near-optimal feasible

solutions. The first mathematical model that minimises the total number of workers and stations

simultaneously in a MALBP was proposed by Fattahi & Roshani (2011). They consider a single

model line, in which the number of workers and stations are the primary and secondary objectives in

the optimisation procedure, respectively. Their model could solve small-size instances in a reasonable

amount of time, but failed in solving larger cases. For that reason, an Ant Colony Optimisation

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(ACO) algorithm has been developed to find feasible and near-optimal solutions for medium and

large test problems. A novel efficient branch-and-bound algorithm called Jumper was developed

by Kellegöz & Toklu (2012) to solve ALBPs with parallel multi-manned stations. Their algorithm

outperforms the VWSolver in both quality of feasible solutions and computational processing times.

Kazemi & Sedighi (2013) and Michels et al. (2018) examine real-size cost-oriented problem instances

for assembly lines with multi-operated stations: the first paper takes into consideration the objective

of minimising total cost per production unit by presenting a heuristic method based on GA, whilst the

latter one develops a MILP model to minimise design implementation costs (robots, station facilities,

and equipment) of a robotic line that conceives the use of multiple robots per station. Roshani et al.

(2013) addressed the MALBP with a multi-objective function in their mathematical model, which

maximises smoothness index and line efficiency, whereas minimising the line length. Moreover, an

improved Simulated Annealing (SA) algorithm was proposed to solve the problem. Kellegöz & Toklu

(2015) presented a constructive heuristic based on priority rules, a GA based improvement procedure,

and conducted computational experiments on MALBP instances with the objective of minimising the

total number of workers in the line. Yilmaz & Yilmaz (2015) aimed at the minimisation of number of

workers, stations, and workload difference between workers with a mathematical formulation. Yilmaz

& Yilmaz (2016a) also analysed the impacts of MALBPs with skilled workers and equipment needs,

and for that a heuristic procedure was proposed for solving the problem. Roshani & Giglio (2017)

approached the MALBP by trying to minimise the cycle time of a line as the primary objective, for

a given number of stations. Besides the MILP model, two meta-heuristics based on SA algorithm

were developed: the indirect and direct SA (ISA and DSA, respectively). The DSA performance

in solving the problem showed to be better in terms of quality and computational time. In order to

reduce the required workspace for shop operations, Chen (2017) developed a hybrid heuristic approach

based on SA algorithms with specific practical extensions for the automotive industry, prioritising the

minimisation of stations. Kellegöz (2017) has improved the mathematical formulation proposed by

Fattahi & Roshani (2011) to minimise the total number of workers and stations in a MALBP. In

addition, a Gantt-based heuristic is proposed within a SA algorithm to solve medium and large-size

instances. This procedure outperforms the ACO algorithm presented by Fattahi & Roshani (2011) and

finds better feasible solutions to most instances in the tested benchmark. Lastly, another SA algorithm

is implemented by Roshani & Nezami (2017), this time to undertake the mixed-model MALBP with

the minimisation of number of workers and stations as primary and secondary objectives, respectively.

Table 1 provides a summarised literature review and, by comparing the proposed method with

previously published papers, it is possible to situate the proposed work’s contribution into the liter-

ature. Although Becker & Scholl (2009) and Kellegöz & Toklu (2012) have developed exact methods

to solve ALBPs with parallel workplaces, they had only considered the minimisation of working areas

and the number of worker as a consequence, which is a different concept. The main concern from

the literature appears to be problems with single model lines in which both total number of workers

and stations are minimised. This is due to the reason that, as stated in several published articles

(e.g. Fattahi & Roshani (2011); Kellegöz (2017); Roshani & Nezami (2017)), minimising the number

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of workers might be more important reducing the number of stations. For that, mathematical models

were developed along with heuristic (Yilmaz & Yilmaz, 2016a), genetic algorithm (Moon et al., 2009),

ant colony optimisation (Fattahi & Roshani, 2011; Yilmaz & Yilmaz, 2016b), and simulated annealing

(Roshani et al., 2013; Kellegöz, 2017) methods. However, none of these methods can guarantee opti-

mality for medium and large-size instances. In order to fill such gap, a new mathematical formulation

is developed with search-space reduction constraints and symmetry breaks to address the problem.

Furthermore, a Benders’ decomposition algorithm is proposed as an innovative exact method for the

problem under study. By applying Benders’ combinatorial cuts (Benders, 1962; Codato & Fischetti,

2006) techniques as lazy constraints, larger benchmark instances can be solved to optimality. Dif-

ferently from the classical Benders’ decomposition, the proposed algorithm presents an integer slave

problem intended for feasibility seeking. These works presented in Table 1, in particular Fattahi &

Roshani (2011) and Kellegöz (2017), will serve as a benchmark for this paper and the decomposition

procedure herein proposed, which focus on minimising the total number of workers as the primary

objective and the number of stations as the secondary one in a MALBP. In this way, a direct per-

formance comparison of the objective function results is possible for each instance. Besides, these

works (Fattahi & Roshani (2011) and Kellegöz (2017)) are the most recent ones concerning MALBPs

with such minimisation objective and they also provide an extensive dataset to validate the proposed

model and algorithm.

Table 1: Literature overview for the Multi-manned Assembly Line Balancing Problem (MALBP).

Product

diversity

Goal

function
Solution method

Author(s) (Year)

S
in

g
le

-m
o
d
e
l

M
ix

e
d
-m

o
d
e
l

P
ro

d
u
c
ti

o
n

ra
te

N
u
m

b
e
r

o
f

w
o
rk

e
rs

N
u
m

b
e
r

o
f

st
a
ti

o
n
s

C
o
st

-o
ri

e
n
te

d

M
a
th

e
m

a
ti

c
a
l

fo
rm

u
la

ti
o
n

H
e
u
ri

st
ic

G
e
n
e
ti

c
a
lg

o
ri

th
m

A
n
t

c
o
lo

n
y

o
p
ti

m
is

a
ti

o
n

S
im

u
la

te
d

a
n
n
e
a
li

n
g

E
x
a
c
t

m
e
th

o
d

Akagi et al. (1983) • • •
Dimitriadis (2006) • • •
Becker & Scholl (2009) • • • •
Moon et al. (2009) • • • • •
Cevikcan et al. (2009) • • • •
Fattahi & Roshani (2011) • • • • •
Kellegöz & Toklu (2012) • • •
Kazemi & Sedighi (2013) • • • •
Roshani et al. (2013) • • • •
Kellegöz & Toklu (2015) • • • •
Yilmaz & Yilmaz (2015) • • • •
Yilmaz & Yilmaz (2016a) • • • • •
Roshani & Giglio (2017) • • • •
Chen (2017) • • • • •
Kellegöz (2017) • • • • •
Roshani & Nezami (2017) • • • • •
Proposed paper (2018) • • • • •

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The remaining of the paper is organised as follows. In Section 2, a deeper definition of MALBP

is given in order to explain the problem. Section 3 presents the MILP model and the additional

constraints to reduce the problem’s search-space. Section 4 reviews the development and applications

of Benders’ decomposition and combinatorial cuts. It also describes in detail the proposed algorithm.

Computational results retrieved from this study are presented and discussed in Section 5. Lastly, in

Section 6, concluding remarks are summarised and further research directions are suggested.

2. Problem statement

As mentioned, the assembly lines considered in this study are dedicated to mass production of

a single model of a unique product. Their stations are positioned sequentially in a serial, straight

line. Only one work-piece can be processed at a given time in each station. Contrary to unpaced

and mixed-model lines, in which processing time oscillations, starvations, and blockages are relevant

factors (Lopes et al., 2018), these pieces are moved forward between stations with a previously known

and fixed cycle time (CT), while their transportation times are neglected. As the line produces a

single product, its pace is exclusively determined by the most loaded station or the defined cycle time

(Baybars, 1986).

In order to assemble any product, a set of tasks T must be performed. These tasks are indivisible

and must respect precedence restrictions in their execution order. Each of them takes a deterministic

duration time (Dt) to be completed, thus, the sum of these duration times assigned to the same worker

must not exceed the defined cycle time. Nevertheless, due to parallel work within stations, it is also

necessary for tasks to be scheduled in such a way that precedence relations are respected.

A sample instance is used to illustrate the difference of SALBP and MALBP. The precedence

graph containing task indexes (number inside the circle) and durations (value on the top right corner

of the circle), as well as optimal solutions for a SALBP and MALBP with a defined CT = 10 are

presented in Figure 2. For the multi-manned line, each station is allowed to be occupied by more

than one worker simultaneously working on the same work-piece. However, the maximum number

of operators (NW , with NW = 3 for the illustrative instance) admitted to perform different tasks

concomitantly may vary due to the product size. The configuration of SALBP’s optimal solution

necessitates 6 workers assigned to 6 stations, totalling an idle time of 10 time units, or approximately

16.67% of the line’s available working time, represented by the blank spaces in each station. On the

other hand, by permitting more than one worker per station, the MALBP solution was able to not

only reduce the line length from 6 to 2 stations, but also assign 5 workers instead of 6 to perform the

task set. In this illustrative instance, it was possible to verify an advantage of multi-manned lines over

simple ones by bringing the idle time down to zero. This efficiency improvement arises from allowing

multiple workers to perform tasks simultaneously. Naturally, it depends on the instance’s parameters.

Nonetheless, this viable advantage comes along with the drawback of computational burden in

solving the problem. Notice that the task indivisibility attribute is still valid and must be respected.

Into the same station, each worker can only execute at most one task at a given time, and no cooper-

ation is allowed between workers, i.e. no common task (Yazgan et al., 2011; Sikora et al., 2017) can

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1

4

3

2

6

6 4

6 4

10

CT = 10

4

3

2

1

1 5432

7

10

5

10

6 7

6 7

5

Figure 2: Precedence graph, SALBP, and MALBP optimal solutions for the illustrative instance.

be performed by two or more workers together. Furthermore, tasks are not constrained by positioning

and zoning restriction (Bartholdi, 1993; Becker & Scholl, 2009), i.e. no interference occurs between

workers during the assembly process (Lopes et al., 2017). Lastly, there is no heterogeneity among

workers (Moreira et al., 2015), i.e. all workers have the same capacity and can perform a task with

the same specific time required for its execution. Whilst different tasks can be performed by differ-

ent workers synchronously, they still must satisfy all precedence relations imposed by the precedence

graph. Therefore, a task scheduling problem arises for each station with conceivable waiting times

for workers before or between the execution of tasks, making MALBPs more complex than SALBPs

(Fattahi & Roshani, 2011).

For the studied problem, it is assumed that the balancing decision is a long-term plan due to the

high costs and line utilisation associated to it. That said, it is considered that the cost of a worker is

much greater than the cost of opening an additional station, since each worker has some associated

costs such as wages, equipment, labour regulations, among others. Hence, the primary objective of the

mathematical model presented in Section 3 is to minimise the total number of workers, accompanied

by the secondary objective of minimising the total number of stations, that is, the line length.

Ultimately, this work presumes that optimal SALBP solutions are feasible configurations for

MALBPs. Naturally, the necessary number of workers (and stations) to achieve an optimal solu-

tion for the SALBP can be accepted as an upper bound for the MALBP, since SALBPs are more

restrictive and assume the number of workers and stations to be the same in a given solution. Like-

wise, it is reasonable to adopt the upper bound for the total number of stations (NS) in a MALBP

to be one unit lesser than its simpler counterpart optimal solution. As the MALBP’s objective is

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to minimise both the number of workers and stations, with a higher weight in the former, the min-

imal marginal improvement taken from a SALBP solution is reducing the line length in one station

by reallocating a worker in some of the remaining stations. For instance, the upper bound for the

number of stations in a MALBP would be considered to be five (NS = 5) for the illustrative example

presented in Figure 2, since that is the SALBP’s optimal number of stations minus one. It is justified

by the reasoning that, if the model is not even able to reduce one station in the previous solution

by pointing out an infeasibility, then it is concluded that allowing more than one worker per station

cannot contribute to efficiency improvements, and optimal solutions of both versions (SALBP and

MALBP) are coincident in objective value. This fact is further analysed in Section 3.3.

3. Mathematical formulation

This section contains a Mixed-Integer Linear Programming (MILP) model developed to represent

the Multi-manned Assembly Line Balancing Problem (MALBP) considering the characteristics identi-

fied in Section 2. Section 3.1 presents the main model to represent the problem and Section 3.2 exhibits

the implemented symmetry breaks that strengthens the problem’s linear relaxation. Table 2 informs

the applied terminology to describe parameters and sets used in the formulation. The variables are

detailed in Table 3, they are created by the model depending on the sets.

Table 2: Terminology: names of parameters and sets, their meaning, and [dimensional units].

Parameter Meaning

NT Number of tasks

NS Maximum number of stations

NW Maximum number of workers per station

CT Cycle time [time units]

Dt Duration [time units] of task t

WCost Worker cost [monetary units]

SCost Station cost [monetary units]

BigM A sufficiently large positive number

Set Meaning

T Set of tasks t; T = {1, 2, ..., t, ..., NT}
S Set of stations s; S = {1, 2, ..., s, ..., NS}
W Set of workers w; W = {1, 2, ..., w, ..., NW}
TS Set of feasible Task-Station elements

TW Set of feasible Task-Worker elements

WS Set of feasible Worker-Station elements

TWS Set of feasible Task-Worker-Station elements

P Set of precedence relations between two tasks ti and tj : (ti, tj)

3.1. Main model

The objective function considered in Expression 1 for this problem is similar to the ones used

in Fattahi & Roshani (2011) and Kellegöz (2017). The first component in the objective function

corresponds to the total number of workers employed in line and their weighted cost (WCost). The

remaining of the expression represents the total number of stations used in the line, along with its

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Terminology: definition of model’s variables.

Variable Set Domain Meaning

Xt,s (t, s) ∈ TS {0, 1} Task-station assignment: set to 1 if task t is performed in station s

Yw,s (w, s) ∈ WS {0, 1} Worker-station assignment: set to 1 if worker w is used in station s

Wt,w (t, w) ∈ TW {0, 1} Task-worker assignment: set to 1 if task t is performed by worker w

Zs s ∈ S {0, 1} Station opened: set to 1 if station s needs to be used

Fti,tj
ti, tj ∈ T | ti 6= tj {0, 1} Follow variable: set to 1 if task ti is followed by task tj

STt t ∈ T Z+ Starting time: time in which task t starts to be performed

At,w,s (t, w, s) ∈ TWS {0, 1} Auxiliary variable: set to 1 for mimicking variables Yw,s

Iw,s (w, s) ∈ WS Z+ Idle time: total time that worker w spends idle in station s

weighted cost (SCost). Remind that WCost is a positive number much larger than SCost, therefore,

the primary objective is to minimise the total number of workers.

Minimise: WCost ·
∑

(w,s)∈WS

Yw,s

︸ ︷︷ ︸
workers cost

+ SCost ·
∑

s∈S
Zs

︸ ︷︷ ︸
stations cost

(1)

In the model’s constraints, Equations 2 are the occurrence constraint, forcing each task to be

allocated to a station exactly once. Equations 3 are analogous to the previous one, it ensures that

each task is exclusively performed by one worker. Equations 4 assign appropriate values to Yw,s

variables: if a task t is allocated to station s, and this same task t is performed by worker w, then

it is possible to induce which worker w from station s is employed for the activity. The precedence

relations between tasks allocated in different stations are satisfied by Inequalities 5.

∑

s∈S
Xt,s = 1 ∀ t ∈ T (2)

∑

w∈W
Wt,w = 1 ∀ t ∈ T (3)

Yw,s ≥ Xt,s +Wt,w − 1 ∀ (t, s) ∈ TS, (t, w) ∈ TW (4)

∑

s∈S
s ·Xti,s ≤

∑

s∈S
s ·Xtj ,s ∀ (ti, tj) ∈ P (5)

The task scheduling core of the problem is based on the concept of task following, i.e. when a task

can only start after other is finished. How task following and task starting time variables behave in

the formulation is hereafter presented. If a pair of tasks (ti, tj) is contained in the precedence set P , it

is mandatory that task tj follows task ti (Equations 6). Logically, tasks with the same index cannot

follow one another, and so is the set Fti,tj accordingly defined. Inequalities 7 and 8 are logical ties to

properly decide following variables depending on task allocation and worker use. Between stations,

if a task ti is not allocated to the station that tj is or in any station after that, then tj follows ti

(Inequalities 7). Into the same station, if tasks ti and tj are performed by the same worker, then

one of them must follow the other (Inequalities 8). Contrary to previously presented mathematical

formulations that use a relative order time reasoning (Fattahi & Roshani, 2011; Kellegöz, 2017),

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

this follow variable (Fti,tj) concept allows the proposed model to be less dependent on Big-M based

constraints. Nonetheless, the definition of task starting times still relies on few formulations containing

Big-M strategies (Hillier & Lieberman, 2015). In all cases, the CT · NS numerical value is a valid,

sufficiently large, value for the parameter BigM (Table 2). Inequalities 9 bind the starting time of a

task t to a minimum value (lower bound) regarding station s in which it is allocated. From the other

side, Inequalities 10 limit the maximum starting time (upper bound) that a task t can begin to be

performed in station s. Complementary, the last task t must be finished up to the last opened station

(Inequalities 11), and all tasks ti that precede tj must be completed before tj starts to be performed

(Inequalities 12).

Ftj ,ti = 1 ∀ (ti, tj) ∈ P (6)

Ftj ,ti ≥ Xtj ,s −
∑

sk∈S|sk≥s
Xti,sk ∀ ti, tj ∈ T, s ∈ S | ti 6= tj (7)

Fti,tj + Ftj ,ti ≥ Xti,s +Xtj ,s +Wti,w +Wtj ,w − 3 ∀ (ti, w, s), (tj , w, s) ∈ TWS | ti 6= tj (8)

STt ≥ CT · (s− 1)−BigM · (1−Xt,s) ∀ (t, s) ∈ TS (9)

STt +Dt ≤ CT · s+BigM · (1−Xt,s) ∀ (t, s) ∈ TS (10)

STt +Dt ≤ CT ·
∑

s∈S
Zs ∀ t ∈ T (11)

STtj ≥ STti +Dti −BigM · (1− Ftj ,ti) ∀ ti, tj ∈ T | ti 6= tj (12)

3.2. Symmetry break constraints

The model 1–12 represents the problem. However, some ordering symmetry breaks were imple-

mented into the model to strengthen the problem’s linear relaxation and avoid wasting much time

visiting symmetric solutions (Walsh, 2006). Inequalities 13 state that a station can only be opened if

there is a task allocated to it. Inequalities 14 are similar, but for a worker assigned to that station.

The combination of these inequalities assists the searching process for tighter bounds, as they prohibit

the existence of unproductive or unoccupied stations. Inequalities 15 state that a station can only be

opened if a previous one is already opened, they prevent the issue found by Yilmaz & Yilmaz (2016b)

in a previous paper (Fattahi & Roshani, 2011), in which an arbitrary opening order of stations was

allowed, leading to inconsistent solutions. Analogously, Inequalities 16 break the symmetry between

workers by stating that a worker can only be used if a previous one is already in use, avoiding equiva-

lent solutions (in terms of objective function value) to be taken into consideration by the model and,

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

therefore, shrinking the search-space. Notice that Inequalities 15 and 16 are only applied to the model

from the second station/worker onwards, as it also was used by Kellegöz (2017).

Zs ≥ Xt,s ∀ (t, s) ∈ TS (13)

Zs ≥ Yw,s ∀ (w, s) ∈ WS (14)

Zs ≤ Zs−1 ∀ s ∈ S | s > 1 (15)

Yw,s ≤ Yw−1,s ∀ (w, s) ∈ WS | w > 1 (16)

Finally, idle time symmetry breaks are also added to the formulation. An auxiliary variable

(At,w,s) that mimics the worker-station assignment (Yw,s) is necessary for this part of the formulation.

Inequalities 17 and 18 are the bounds to define appropriate values for At,w,s. This is necessary to

calculate idle times associated to each worker along stations (Iw,s), which is done by Inequalities 19

and 20. Inequalities 21 conduct the symmetry break based on idle time information: the first worker’s

idle time must be lesser or equal to the second’s and so on. This also enables the reduction of search-

space, since equivalent solutions would be disregarded by the model due to rules concerning idle time

differences between workers imposed by Inequalities 21.

At,w,s ≥ Xt,s +Wt,w − 1 ∀ (t, w, s) ∈ TWS (17)

∑

(t,w,s)∈TWS

At,w,s ·Dt ≤ CT ∀ (w, s) ∈ WS (18)

Iw,s ≥ CT · Yw,s −
∑

(t,w,s)∈TWS

At,w,s ·Dt ∀ (w, s) ∈ WS (19)

∑

(w,s)∈WS

Iw,s +
∑

t∈T
Dt ≤ CT ·

∑

(w,s)∈WS

Yw,s (20)

Iw,s ≥ Iw−1,s ∀ (w, s) ∈ WS | w > 1 (21)

The MILP formulation defined by 1–21 is henceforth referred to as PM (proposed model).

3.3. Upper bound value for NS

This section mathematically formalises the modelling decisions for upper bound values applied to

NS. By hypothesis, the SALBP is a very restrictive problem, constrained by several simplification

hypotheses (Baybars, 1986). One of them states that each station is operated by one worker. Thus,

by minimising the number of stations, one is, in practice, minimising the number of workers as a

consequence. When such hypothesis is relaxed, more than one worker can be allowed in each station,

and the number of workers and stations are explicitly minimised separately. Furthermore, it is possible

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

to attribute weights to workers and stations based on the importance (cost) of each resource, in which

cumulative wages generally are much more costly than the physical parts of a station (Fattahi &

Roshani, 2011; Kellegöz, 2017).

That stated, it is known that the number of workers and stations in both SALBP and MALBP

cases are integers. For SALBP, xS and yS represent the number of workers and stations in a given

configuration, respectively. Analogously, let xM and yM respectively represent the number of workers

and stations in a given configuration of MALBPs. Naturally, xS and yS will always assume the same

integer value (xS = yS) in any solution, since it is, by hypothesis, mandatory for a SALBP to have

the same number of workers and station. Conversely, xM is considered to be greater or equal to yM

(xM ≥ yM), because each opened station must have at least one worker performing operations in

it. Moreover, the worker component weighted cost (w1) is much larger than its station counterpart

(w2): w1 >> w2. Therefore, an objective function considering SALBP hypotheses can be expressed

as S(xS , yS) = w1 · xS + w2 · yS | xS = yS and a MALBP objective function as M(xM , yM) =

w1 · xM + w2 · yM | xM ≥ yM .

In terms of optimal solutions, the number of workers and stations are represented by x∗S , y∗S , x∗M ,

and y∗M for SALBP and MALBP cases, respectively. As MALBPs are less restrictive than SALBPs,

their optimal solutions for the minimisation problem cannot be worse than their simpler counterpart

in any given instance: Proposition 1.

Proposition 1. M(x∗M , y
∗
M) ≤ S(x∗S , y

∗
S), which can be subdivided into two cases:

(i) M(x∗M , y
∗
M) = S(x∗S , y

∗
S)

(ii) M(x∗M , y
∗
M) < S(x∗S , y

∗
S)

Proof. In Proposition 1, case (i), the SALBP solution has, by hypothesis, the same number of

workers and stations (x∗S = y∗S). Therefore, in order to have an optimal MALBP solution equivalent

to a SALBP one, x∗M must be equal to x∗S , and y∗M must be equal to y∗S , that is: M(x∗M , y
∗
M) =

S(x∗S , y
∗
S) ⇔ x∗M = x∗S = y∗M = y∗S , which is perfectly feasible. For case (ii), in which the optimal

MALBP solution value of a given instance is exclusively lower than the optimal SALBP one, at least

one of the following conditions must happen: (a) fewer workers (x∗M < x∗S), which would inevitably

lead to fewer stations (a station without any worker/operation cannot be opened), or (b) same number

of workers, but fewer stations (x∗M = x∗S ∧ y∗M < y∗S), which still meets the MALBP hypothesis of

allowing more than one worker per station and is also reckoned possible by an illustrative example

(Figure 2).

Given the assumption that the worker cost component receives a much higher weight in the objec-

tive function than the station one (w1 >> w2), it can be concluded by Proposition 1, case (ii), that the

minimal marginal improvement in a MALBP solution over a SALBP one comes from the reduction

of the line length in one station unit (x∗M ≤ x∗S , y∗M < y∗S), and from case (i) that, in the worst case,

the MALBP optimal solution is equivalent to the SALBP one, which produces the following corollary

that is used in the proposed mathematical model.

Corollary. The upper bound for the number of stations (NS) in a MALBP model can be set to

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

a value one unit lesser than the optimal solution to its SALBP counterpart (taking w1 >> w2 into

account). If the model is found to be infeasible, it is concluded that the MALBP optimal solution is

exactly the same as the configuration yielded by its SALBP version.

4. Benders’ decomposition algorithm

The Benders’ decomposition algorithm (hereafter referred to as BDA) developed for the MALBP

is presented in this section. The Benders’ decomposition (Benders, 1962) is a method based on

reformulating the original monolithic model into two hierarchical problems: the master problem (MP)

and the slave (or sub) problems (SP). The partition aims at freeing the MP from several variables and

restrictions, which are then solved as SPs. A Benders’ decomposition works iteratively: a solution

of the MP (with fixed values for the key variables) is then used in the SPs. The SP is generally

decomposable in multiple problems, reducing the computational burden comparing to a monolithic

problem. The results of such divided problems are used to inform the MP by using cutting planes.

The MP with extra restrictions is solved and the procedure repeats with the next answer. In other

words, the decomposition strips off difficult variables from the MP and then iteratively corrects misled

solutions by solving the parts that are omitted in the MP. In the proposed implementation, the MP

is related to the high-level decisions of task-station and worker-station assignments, whereas SP is

associated to feasibility tests on the lower-level problem of task-worker assignment and task-scheduling

in each station. Besides, the MP is enhanced by graph-based feasibility cuts described in Section 4.1.

Extending the concept to use Combinatorial Benders’ Cuts (Codato & Fischetti, 2006), the MP is

distilled from the original and complete combinatorial problem (monolithic model), which is equivalent

to being significantly relaxed, since it is initially separated from the SP. Once all decisions variables

to compute the objective value (Yw,s and Zs) are contained in the MP, solving it might yield feasible

integer solutions, which are sent to the SP to be validated (or not) by it. If feasibility is detected by

the SP, the current solution is accepted as an incumbent one. Otherwise, the SP returns combinatorial

inequalities to be added as lazy constraints into the MP. The BDA iterates this procedure until an

optimal solution is found and proven.

The use of BDAs in the literature is reviewed and summarised by Rahmaniani et al. (2017).

Several real-world problems were approached by using Benders’ decomposition method. Nevertheless,

when it comes to line balancing problems, only one work is listed in the survey (Osman & Baki,

2014), which concerns transfer lines. Further research regarding assembly line balancing problems

was scarcely developed. In Hazir & Dolgui (2013) and Hazir & Dolgui (2015), straight and U-type

layouts are considered under uncertainty, formulating a robust optimisation model and algorithm.

Lastly, Akpinar et al. (2017) takes into account set-up times that are dependent on task sequencing

in each station, interpreting task assignment and sequencing decisions as hierarchical problems. None

of them involved assembly lines with multi-manned stations.

For the MALBP, the MP represents task-station assignments and worker-station allocation prob-

lems, whilst the SP takes care of the task-worker scheduling problem. Notice that, in this application,

SP is not a continuous problem, thus a feasibility-seeking variant (Benders, 1962) must be used in or-

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

der to solve the problem previously stated in Section 3 by the PM (Expressions 1–21). Therefore, the

slave problem should be used as a feasibility check on the system, as it was stated by Côté et al. (2014)

and Fakhri et al. (2017), who applied the method in the strip packing problem and the capacitated

fixed charge multiple knapsack problem, respectively. In particular for the proposed BDA, the SPs are

task-worker scheduling problems solved individually for each multi-manned station. As Benders de-

compositions might go through a slow convergence process (Magnanti & Wong, 1981), some algorithm

enhancements are deemed necessary to accelerate such operation and so they are pointed out along

with the MP and SP descriptions. Also for that reason, whenever an infeasibility is detected, such

condition is modelled as a new restriction and added to the MP. These combinatorial Benders’ cuts

are further explained in Section 4.2. Moreover, feasibility cuts based on precedence graph analyses

are implemented in the MP (Section 4.1), limiting the possibilities of task allocations.

4.1. Master problem

For the MP, Expressions 1, 2, 5, and 13–16 are maintained, and additional constraints are developed

based on a set of incompatible task pairs (Inc), which are tasks that cannot be executed in the same

station due to precedence relations and cycle time restrictions, independently on the number of workers

assigned there (Enhancement 1). How this analysis is conducted to define such task pairs is hereafter

presented. In order to do so, the precedence relations set P must be extended to a complete set P ∗

by considering all direct and indirect precedence relations. By constructing this complete set P ∗, it is

possible to create successors and predecessor sets for each task: Suct and Pret are sets that represent

all direct and indirect successors and predecessors of a task t, respectively. Furthermore, two extra

parameters are needed to represent the critical path duration (δti,tj) and the sum of task durations

(σti,tj) between tasks ti and tj . When computed, these parameters are recursively evaluated in a

topological order.

Given three tasks ti, tj , and tk, such that ti 6= tj 6= tk, Equations 22 recursively attribute to

parameter δti,tj the critical path between two tasks by employing an algorithmic procedure, that is,

they run through the precedence graph and establishes what is the longest sum of task durations that

have to be performed between tasks ti and tj . This concept was adopted from project scheduling

problems (Klein, 2000). Equations 23 are needed to further calculate capacity bounds, another logic

inherited from the resource constrained project scheduling problems (Klein, 2000). The sum of task

durations of all tasks that are successors of task ti and predecessors of task tj is assigned to the

parameter σti,tj . Taking the precedence graph from Figure 2 as an example, these parameters for the

task pair (t1,t6) would be δt1,t6 = 4 and σt1,t6 = 8.

δti,tj = max [0; δti,tk +Dtk | tk ∈ Sucti ∩ Pretj] ∀ (ti, tj) ∈ P ∗ (22)

σti,tj =
∑

tk∈Sucti∩Pretj

Dtk ∀ (ti, tj) ∈ P ∗ (23)

In order to define which task pairs (ti, tj) are incompatible, only task pairs (ti, tj) ∈ P ∗ are

considered. If either Inequalities 24 or Inequalities 25 are verified, the incompatibility condition

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

is satisfied, and the task pair (ti, tj) are added to the incompatibility set Inc. Once in hand of

Inc, Inequalities 26 are added to the MP, restricting specific task pairs to be allocated to the same

station. Whenever Inequalities 25 are not satisfied, it is possible to generate weaker – but still valid –

restrictions. Inequalities 27 state the minimum number of workers that a station requires in order to

perform both tasks of a task pair (ti, tj), being ε a very small positive number to avoid dividing by

zero. Finally, the available time to perform tasks in each station is given by the number of workers

assigned there (Inequalities 28).

Dti +Dtj + δti,tj > CT (24)

Dti +Dtj +

⌈
σti,tj
NW

⌉
> CT (25)

Xti,s +Xtj ,s ≤ 1 ∀ s ∈ S, (ti, tj) ∈ Inc (26)

∑

w∈W
Yw,s ≥

⌈
σti,tj

CT −Dti −Dtj + ε

⌉
−NW · (2−Xti,s −Xtj ,s) ∀ s ∈ S, (ti, tj) ∈ P ∗ (27)

∑

t∈T
Xt,s ·Dt ≤ CT ·

∑

w∈W
Yw,s ∀ s ∈ S (28)

This reformulated part of BDA focus on finding an optimal solution for the problem. Any feasible

solution (X̃, Ỹ) = {(X̃1,1, ..., X̃t,s), (Ỹ1,1, ..., Ỹw,s)} found by the MP is passed to SP for scheduling

feasibility check in each station s. That way, the monolithic model is decomposed in an MP that

decides allocation variables (Xt,s) and the number of total workers and stations (Yw,s and Zs) used

along the line, while the SP seeks for feasible task-worker assignments (Wt,w) by considering task

starting times and ordering (STt and Fti,tj) for each station.

4.2. Slave problem

The SP keeps Expressions 3, 6, and 12 as in Section 3, but modifies Inequalities 8, 19, and 21

for simpler ones. For that, they are applied to each station s separately by using task and worker

sub-sets Ts and Ws, which are dependent on the solution (X̃, Ỹ) sent from MP, as expressed by

Equations 29 and 30. Thinking of each station as a separate resource-constrained scheduling sub-

problem, Inequalities 31, 32, and 33 respectively substitute the previous monolithic ones without

any loss of functionality. Slave problems in which only one worker is employed in the station are

automatically deemed feasible, since there is no scheduling problem to begin with in such cases.

Ts = {t ∈ T | X̃t,s = 1} ∀ s ∈ S (29)

Ws = {w ∈ W | Ỹw,s = 1} ∀ s ∈ S (30)

Fti,tj + Ftj ,ti ≥Wti,w +Wtj ,w − 1 ∀ ti, tj ∈ Ts (31)

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Iw = CT −
∑

t∈Ts

Dt ·Wt,w ∀ w ∈ Ws (32)

Iw ≥ Iw−1 ∀ w ∈ Ws | w > 1 (33)

In order to prevent redundant feasibility seeking tests, a hash-table (Maurer & Lewis, 1975) is em-

ployed to store SP instance information that had led to feasible solutions (Enhancement 2). Whenever

a task allocation set for a given station is tested and found to be feasible, that set of tasks and number

of workers used to perform them is included into a tested problem hash-table, so the SP model does

not need to solve repeated scheduling problems, since the algorithm can quickly consult this hash-table

beforehand. If the MP’s solution is evaluated as feasible for all stations by the SP, then such solution

is considered incumbent by the proposed BDA and the algorithm returns to the MP with a new UB.

Otherwise, the submitted MP’s solution might be detected as infeasible. If that is the case, Benders’

combinatorial cuts are applied to the MP as lazy constraints, that is, new restrictions are added to

the initial optimisation problem in order to cut off infeasible task allocation and worker assignment

possibilities (Enhancement 3).

The type of cut depends on the number of workers that the SP instance had employed and was

proven infeasible. Stronger cuts can be added when the trial solution employs the maximum allowed

workers for a specific station. Inequalities 34 state that, if a given tested task allocation set cannot be

performed in the same station s, then at least one of them must be performed elsewhere. Alternatively,

the allocation may be infeasible, but the maximum number of workers is not being used for that

combination of tasks. In such cases, the cut described by Inequalities 35 are applied to the MP; it

states that a tested task allocation set cannot be entirely performed in the same station unless an

additional worker (represented by the |Ws|+ 1 index) is assigned there.

∑

t∈Ts

Xt,s ≤
∑

t∈T
X̃t,s − 1 ∀ s ∈ S (34)

∑

t∈Ts

Xt,s ≤
∑

t∈T
X̃t,s − 1 + Y|Ws|+1,s ∀ s ∈ S (35)

After solving all SPs, the BDA returns to MP and keeps searching for better solutions with a

revised UB or newly added lazy constraints. This process is repeated iteratively until an optimal

solution is found and proven or the computational processing time limit is reached.

4.3. BDA pseudo code

A summarised pseudo-code of the proposed BDA is presented in Algorithm 1. This is the im-

plementation used to obtain the results reported in the computational study performed in Section 5.

Initially, MALBP’s parameters and computational processing time limit are input in order to build

the optimisation problem. After that, the algorithm starts solving the MP (line 5). Tight upper

bounds for the number of workers along the line (ObjW) and the number of opened stations (ObjS)

based on SALBP results are taken into consideration to shrink the search-space (Enhancement 4).

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Any time a new solution is found by MP, it is sent to feasibility check at the SP (line 6). Task-worker

scheduling is conducted for each station (lines 8 and 9). When the combination of tasks and number

of workers is feasible for a given station, such combination is added to a list coded as a hash-table

(lines 10 and 11). Otherwise, if an infeasibility is detected, either Cut 34 or Cut 35 is added to the

MP as a lazy constraint depending on the cardinality of Ws (lines 14 to 18). If all SP stations are

proven to be feasible, this tested solution is considered to be the current incumbent solution (lines

21 and 22). Finally, the algorithm stops processing if optimality is proven or if time limit is reached

(lines 23 and 24).

Algorithm 1: BDA’s pseudo-code for the MALBP.

Input : NT,NS,NW,CT,Dt, P, T ime.Limit

Output: ObjW,ObjS, LB,CPU, TWSallocation

1 Initialisation: Status← 0, Incumbent← {max.value,max.value, 0,−}, Hash← {}
2 Start

3 while Status = 0 do

4 Timer.Start, compute CPU time

5 Solve MP, compute ObjW,ObjS, LB, TWSallocation

6 if (X̃, Ỹ)new then

7 Counter ← 0

8 foreach s ∈ {1, ..., ObjS} do

9 Solve SP (X̃, Ỹ)s, compute feasibility

10 if feasible then

11 Hash← Hash
⋃{(X̃, Ỹ)s}

12 Counter ← Counter + +

13 else

14 if |Ws| = NW then

15 Add Cut 34 to MP

16 else

17 Add Cut 35 to MP (in case |Ws| < NW)

18 end

19 end

20 end

21 if Counter = ObjS then

22 Incumbent(ObjW,ObjS, LB, TWSallocation)← (X̃, Ỹ)new

23 if (ObjW + ObjS = LB) ∨ (CPU ≥ Time.Limit) then

24 Status← 1

25 end

26 end

27 end

28 end

29 End

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Computational study

This section presents a computational study that was carried out in the same benchmark dataset

used by Fattahi & Roshani (2011) and Kellegöz (2017) combined. Thus, both datasets were used,

totalling 131 instances. All tested instances are contained in a well-known literature benchmark.

They are available for download at <www.assembly-line-balancing.de> with information about task

durations, precedence graphs, and cycle time values. Some of these instances’ features can be observed

in Table 4: the number of tasks (NT) is the chosen parameter to divide instances into three categories

related to size (small, medium, and large), and instances are solved with different cycle time (CT)

values and maximum number of workers (NW) allowed in each station. Upper bounds for the number

of stations (NS) for each instance has been obtained in a pre-processing step: (i) the SALBP version

of each problem is solved using SALOME (Scholl & Klein, 1997), which takes less than a second; (ii)

NS is set to one unit lesser than such value for the MALBP. In order to ease results’ visualisation

and respect parameters’ order of magnitude, WCost and SCost were set to 100 and 1, respectively.

Table 4: Summary of dataset instances.

Size (Total of instances) Problem NT CT NW

Small (50) Mitchell 21 14; 15; 21; 26; 35; 39 2

Heskiaoff 28 138; 205; 216; 256; 324; 342 2; 4

Sawyer 30 25; 27; 30; 36; 41; 54; 75 2; 4

Kilbridge 45 57; 79; 92; 110; 138 184 2; 4; 6

Medium (45) Tonge 70 176; 364; 410; 468; 527 2; 4; 6

Arcus1 83 5048; 5853; 6842; 7571; 8412; 8998; 10816 2; 4; 6

Mukherje 94 176; 248; 351 2; 4; 6

Large (36) Arcus2 111 5755; 8847; 10027; 10743; 11378; 17067 2; 4; 6

Barthol2 148 84; 106; 170 2; 4; 6

Barthold 148 403; 513; 805 2; 4; 6

The computational study is divided in two parts. Firstly, small-size instances are solved in Sec-

tion 5.1 for the monolithic model presented in Section 3 (PM) and results are compared to those

obtained by Kellegöz (2017); this last model is henceforth referred to as KM (Kellegöz’s Model).

In addition, the BDA exhibited in Section 4 is also applied to the same fraction of the benchmark

dataset and its performance is compared to the Ant-Colony Algorithm (ACO) and the Gantt Simu-

lated Annealing (GSA) heuristic developed by Fattahi & Roshani (2011) and Kellegöz (2017) in terms

of solution quality reported by them.

Afterwards, as both BDA, ACO, and GSA demonstrated dominance over monolithic models in

terms of solution quality and computational processing time, mathematical formulations (PM and KM)

were discarded in the remainder testing process. Therefore, for the second part of this computational

study, only BDA, ACO, and GSA were considered to be applied to the remaining dataset (medium

and large-size instances). Such results and comparisons are presented in Section 5.2.

In both Sections 5.1 and 5.2, each instance result is reported in a line of Tables 5 to 7, addressed

by the problem, CT, and NW values. St indicates solution status, reporting optimal (*) or integer

(I) solutions. The objective function value is represented by the Obj column. For the BDA, this Obj

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

column is branched into upper bound (UB), lower bound (LB), and Gap values. Total computational

processing times (CPU) and computational processing times for the slave problems (SCPU) are in-

formed in seconds. As CPU of some instances were not reported in Fattahi & Roshani (2011), they

are left in unfilled (–). Lastly, the number of added cuts (Cut1 and Cut2 for Inequalities 34 and 35,

respectively) and the number of times that the algorithm accessed the hash-table (HT) are reported.

To all instances, Gurobi 8.1 (Gurobi Optimization, 2019) was selected as universal solver due to

implementation readiness, focusing on optimality for the MP and feasibility for the SP. A 64 bit

IntelTM i7-3770 CPU (3.4 GHz) with 16 GB of RAM was employed using four threads. The BDA was

coded in Microsoft Visual Basic 2015 programming language.

5.1. Small-size instances

Both PM and BDA were applied to the small-size instances presented in Table 4 with a time limit

set to 3600 seconds. Table 5 summarises the comparison between monolithic models and algorithms

for the small-size dataset. The results obtained by PM are compared to those reported by KM

whenever such instance has also been solved by Kellegöz (2017), whilst BDA results are displayed

alongside with the best result found by either ACO or GSA in their respective papers. This subset

contains 50 instances, in which PM clearly outperforms KM. The PM obtained 46 optimal solutions,

whereas in the 26 instances tested by Kellegöz (2017), KM reached optimality in only 12 instances.

In other words, PM has improved and proven the optimality of 6 solutions (boldfaced in Table 5) and

proven the optimality of 7 previously known integer solutions (italicised in Table 5) obtained by a

mathematical model. As reported in Section 3, this might be due to the fact that modelling decisions

were different between PM and KM: the formulation is less dependent on Big-M constraints, a follow

variable concept was employed instead of a relative order time one, and symmetry break constraints

were implemented.

BDA, ACO, and GSA results are reported in the remaining of the comparison by Table 5. Equiv-

alent solutions and computational processing times are verified for both methods, however, the BDA

presented in Section 4 is able to concede optimality proofs. Therefore, the BDA not only has reached

results as good as the ACO algorithm and the GSA heuristic, but it also has guaranteed solutions to

be optimal for 49 out of 50 small-size instances in a very reduced CPU time.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

T
a
b

le
5
:

R
es

u
lt

s
co

m
p

a
ri

so
n

fo
r

sm
a
ll
-s

iz
e

in
st

a
n

ce
s

b
et

w
ee

n
m

o
n

o
li
th

ic
m

o
d

el
s

(P
M

a
n

d
K

M
),

B
D

A
,

A
C

O
a
lg

o
ri

th
m

a
n

d
G

S
A

h
eu

ri
st

ic
.

P
ro

b
le

m
C
T

N
W

P
M

K
M

B
D

A
A

C
O

/
G

S
A

S
t

O
b

j
C

P
U

S
t

O
b

j
C

P
U

1
S
t

U
B

L
B

G
a
p

C
P

U
S
C

P
U

C
u
t1

C
u
t2

H
T

O
b

j
C

P
U

1

M
it

ch
e
ll

1
4

2
*

8
0
7

0
.0

9
*

8
0
7

3
.4

0
*

8
0
7

8
0
7

0
%

0
.0

1
0
.0

0
0

0
0

8
0
7

0
.8

8

1
5

2
*

8
0
7

0
.0

8
–

–
–

*
8
0
7

8
0
7

0
%

0
.0

1
0
.0

0
0

0
0

8
0
7

–

2
1

2
*

5
0
5

0
.1

7
–

–
–

*
5
0
5

5
0
5

0
%

0
.0

1
0
.0

0
0

0
0

5
0
5

–

2
6

2
*

5
0
4

0
.0

6
*

5
0
4

0
.4

4
*

5
0
4

5
0
4

0
%

0
.0

1
0
.0

0
0

0
0

5
0
4

0
.9

3

3
5

2
*

3
0
3

0
.0

5
–

–
–

*
3
0
3

3
0
3

0
%

0
.0

1
0
.0

0
0

0
0

3
0
3

–

3
9

2
*

3
0
2

0
.0

4
*

3
0
2

0
.4

4
*

3
0
2

3
0
2

0
%

0
.0

1
0
.0

0
0

0
0

3
0
2

0
.9

4

H
e
sk

ia
o
ff

1
3
8

2
*

8
0
5

4
2
.2

6
I

8
0
5

1
h

*
8
0
5

8
0
5

0
%

1
.4

0
1
.3

7
5
7
5

0
8
6

8
0
5

0
.9

5

4
*

8
0
4

0
.8

0
*

8
0
4

1
9
.9

8
*

8
0
4

8
0
4

0
%

0
.0

1
0
.0

1
0

0
0

8
0
4

1
.2

6

2
0
5

2
*

5
0
3

0
.3

6
–

–
–

*
5
0
3

5
0
3

0
%

0
.7

3
0
.7

1
8
7

0
2

5
0
3

–

4
*

5
0
3

2
.2

3
–

–
–

*
5
0
3

5
0
3

0
%

0
.7

3
0
.7

2
0

4
5

0
5
0
3

–

2
1
6

2
*

5
0
3

0
.3

8
–

–
–

*
5
0
3

5
0
3

0
%

0
.1

9
0
.1

8
7
2

0
7

5
0
3

–

4
*

5
0
3

1
.9

1
–

–
–

*
5
0
3

5
0
3

0
%

0
.0

3
0
.0

2
0

0
0

5
0
3

–

2
5
6

2
*

4
0
3

1
1
.1

0
I

5
0
3

1
h

*
4
0
3

4
0
3

0
%

1
.5

9
1
.4

6
1
3
2
6

0
0

4
0
3

1
.0

4

4
*

4
0
3

1
0
.1

2
I

5
0
2

1
h

*
4
0
3

4
0
3

0
%

2
.7

8
2
.5

0
0

1
4
0
1

0
4
0
3

1
.2

1

3
2
4

2
*

4
0
2

0
.0

7
–

–
–

*
4
0
2

4
0
2

0
%

0
.0

2
0
.0

2
0

0
0

4
0
2

–

4
*

4
0
2

0
.0

7
–

–
–

*
4
0
2

4
0
2

0
%

0
.0

2
0
.0

1
0

0
0

4
0
2

–

3
4
2

2
*

3
0
2

0
.2

8
*

3
0
2

5
3
.4

3
*

3
0
2

3
0
2

0
%

0
.2

5
0
.2

4
0

0
0

3
0
2

1
.0

7

4
*

3
0
2

0
.4

9
*

3
0
2

1
7
.0

4
*

3
0
2

3
0
2

0
%

0
.3

2
0
.3

1
0

8
0

3
0
2

1
.2

1

S
a
w

y
e
r

2
5

2
*

1
4
0
8

2
.4

2
I

1
4
0
8

1
h

*
1
4
0
8

1
4
0
8

0
%

0
.0

3
0
.0

1
8

0
0

1
4
0
8

1
.4

6

4
*

1
4
0
8

3
.9

4
I

1
4
0
8

1
h

*
1
4
0
8

1
4
0
8

0
%

0
.2

0
0
.1

7
0

2
7
2

4
9

1
4
0
8

1
.7

9

2
7

2
*

1
3
0
8

1
4
.3

4
I

1
3
0
8

1
h

*
1
3
0
8

1
3
0
8

0
%

0
.0

4
0
.0

2
3
2

0
3

1
3
0
8

1
.1

9

4
*

1
3
0
8

9
.0

6
I

1
3
0
8

1
h

*
1
3
0
8

1
3
0
8

0
%

0
.0

2
0
.0

1
0

0
0

1
3
0
8

1
.5

2

3
0

2
*

1
2
0
6

2
5
.3

8
–

–
–

*
1
2
0
6

1
2
0
6

0
%

0
.0

6
0
.0

2
1
4

0
0

1
2
0
7

–

4
*

1
2
0
6

7
3
.2

5
–

–
–

*
1
2
0
6

1
2
0
6

0
%

0
.1

0
0
.0

1
0

0
0

1
2
0
7

–

3
6

2
*

1
0
0
6

8
.2

6
–

–
–

*
1
0
0
6

1
0
0
6

0
%

0
.0

1
0
.0

1
0

0
0

1
0
0
6

–

4
*

1
0
0
6

6
.9

9
–

–
–

*
1
0
0
6

1
0
0
6

0
%

0
.0

1
0
.0

1
0

0
0

1
0
0
6

–

4
1

2
*

8
0
4

1
.6

0
–

–
–

*
8
0
4

8
0
4

0
%

0
.0

7
0
.0

1
0

0
1

8
0
6

–

4
*

8
0
4

2
.4

9
–

–
–

*
8
0
4

8
0
4

0
%

0
.0

5
0
.0

3
0

0
0

8
0
6

–

5
4

2
*

7
0
4

5
4
.3

4
I

7
0
4

1
h

*
7
0
4

7
0
4

0
%

0
.0

3
0
.0

2
0

0
0

7
0
4

1
.1

3

4
*

7
0
4

5
.8

8
I

7
0
4

1
h

*
7
0
4

7
0
4

0
%

0
.0

1
0
.0

1
0

0
0

7
0
4

1
.4

4

7
5

2
*

5
0
3

0
.1

7
*

5
0
3

9
.4

2
*

5
0
3

5
0
3

0
%

0
.0

1
0
.0

1
0

0
0

5
0
3

1
.2

8

4
*

5
0
3

5
.8

8
*

5
0
3

5
.9

9
*

5
0
3

5
0
3

0
%

0
.0

1
0
.0

1
0

0
0

5
0
3

1
.7

0

K
il

b
ri

d
g
e

5
7

2
*

1
0
0
6

3
1
8
4
.1

3
I

1
0
0
6

1
h

*
1
0
0
6

1
0
0
6

0
%

3
.4

3
3
.1

5
3
9
0

0
2
0

1
0
0
6

1
.5

3

4
*

1
0
0
5

6
.6

6
I

1
1
0
5

1
h

*
1
0
0
5

1
0
0
5

0
%

0
.5

3
0
.4

8
5

5
0

9
1
0
0
5

2
.2

1

6
*

1
0
0
5

5
.0

7
*

1
0
0
5

2
8
4
3
.8

5
*

1
0
0
5

1
0
0
5

0
%

3
.0

2
2
.9

6
0

4
5

3
1
0
0
5

2
.2

2

7
9

2
*

7
0
4

2
7
.9

0
–

–
–

*
7
0
4

7
0
4

0
%

1
.0

3
0
.7

0
1
6
5

0
1
9

7
0
5

–

4
I

8
0
3

1
h

–
–

–
*

7
0
3

7
0
3

0
%

0
.3

3
0
.2

8
0

0
0

7
0
5

–

6
I

8
0
3

1
h

–
–

–
*

7
0
3

7
0
3

0
%

2
.3

6
2
.2

0
0

5
0

0
7
0
5

–

9
2

2
I

6
0
4

1
h

–
–

–
*

6
0
4

6
0
4

0
%

9
3
.8

2
9
1
.7

5
4
5
3
6

0
8
6
6

6
0
4

–

4
*

6
0
3

8
.8

2
–

–
–

*
6
0
3

6
0
3

0
%

0
.6

1
0
.5

7
0

0
0

6
0
4

–

6
*

6
0
3

4
8
.3

1
–

–
–

*
6
0
3

6
0
3

0
%

0
.5

4
0
.4

6
0

4
0

6
0
4

–

1
1
0

2
*

6
0
3

0
.8

9
*

6
0
3

6
6
3
.2

7
*

6
0
3

6
0
3

0
%

0
.7

5
0
.7

2
3

0
0

6
0
3

1
.9

5

4
*

6
0
3

1
.6

6
*

6
0
3

3
2
3
.2

7
*

6
0
3

6
0
3

0
%

0
.0

3
0
.0

2
0

0
0

6
0
3

2
.6

0

6
*

6
0
3

2
.0

7
*

6
0
3

6
3
.8

8
*

6
0
3

6
0
3

0
%

0
.0

5
0
.0

4
0

0
0

6
0
3

2
.7

3

1
3
8

2
I

4
0
3

1
h

–
–

–
I

4
0
3

4
0
2

0
.2

5
%

1
h

3
5
5
1
.7

8
9
8
7

0
1

4
0
3

–

4
*

4
0
2

1
3
.4

6
–

–
–

*
4
0
2

4
0
2

0
%

1
0
.4

1
1
0
.3

9
0

3
0

4
0
3

–

6
*

4
0
2

4
2
.4

4
–

–
–

*
4
0
2

4
0
2

0
%

2
1
.5

0
2
1
.4

5
0

1
2

0
4
0
3

–

1
8
4

2
*

3
0
2

4
.1

3
I

4
0
2

1
h

*
3
0
2

3
0
2

0
%

0
.5

3
0
.5

1
4

0
0

3
0
2

2
.1

5

4
*

3
0
2

9
.2

9
I

4
0
2

1
h

*
3
0
2

3
0
2

0
%

0
.6

6
0
.6

4
0

4
0

3
0
2

4
.2

5

6
*

3
0
2

1
4
.7

1
I

4
0
2

1
h

*
3
0
2

3
0
2

0
%

0
.4

7
0
.4

4
0

2
4

0
3
0
2

3
.8

4

1
A

s
re

p
o
rt

e
d

in
K

e
ll

e
g
ö
z

(2
0
1
7
).

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5.2. Medium and large-size instances

As BDA has been validated as a reliable and efficient method in Section 5.1 by quickly obtaining

optimal solutions in all but one instance, the superiority of the proposed algorithm over the monolithic

model was evidenced. Hence, this section focuses on computationally solving medium and large-size

instance only with specialised methods (i.e. BDA, ACO, and GSA heuristic) and comparing their

results in regard to solution quality that were previously reported in Fattahi & Roshani (2011) and

Kellegöz (2017).

Table 6 reports the results for 45 medium-sized instances from Table 4. In terms of solution quality,

the proposed BDA has outperformed ACO algorithm and GSA heuristic in 19 instances (boldfaced

values in Table 6), while tying in the remaining 26. Nonetheless, it is important to notice that none

of these instances had been directly solved to optimality previously, since their results would rather

be compared to calculated theoretical LBs. Out of the 45 medium-sized instances, the proposed BDA

has proven the optimality of 40 solutions, with a small integer gap for the remaining 5 cases.

The last 36 instances to be tested from Table 4 are contained in the large-size subset. Table 7

presents the comparison between BDA, ACO algorithm, and GSA heuristic when both are applied to

such instances. The boldfaced values represent the 23 out of 36 results in which BDA has outperformed

ACO and GSA in terms of solution quality and also proven optimality for the instance. Moreover,

2 previous best-known integer solutions were improved by BDA, whereas in 1 other instance GSA

performed better. Out of the remaining 10 instances in which both methods tied, there are 5 newly

proven optimal solutions obtained by BDA.

Both BDA, ACO algorithm, and GSA heuristic were able to reach the same number of workers

as the optimal SALBP value in their solutions for the whole solved dataset (Tables 5, 6, and 7).

Instances that the proposed BDA outperformed ACO algorithm and GSA heuristic were solved with

a reduced number of stations, which indicates a tendency that it is more profitable to accept the

SALBP optimal solution as the number of workers, and try to minimise as much as possible the line

length (i.e. the number of multi-manned stations). An evidence to support this methodology is that

the possibility to also reduce the number of workers in a multi-manned assembly line presented in

Section 2 was not verified in any instance of the benchmark. Finally, it was verified that the BDA has

a tendency in spending the majority of its computational processing time solving SPs in most cases.

Besides, Cut1 is less frequently added than Cut2 when the maximum number of workers is increased

and the hash-table is more often consulted for lower values of cycle time.

In order to conduct a feasibility check, the task-worker-station allocation results were tested for all

newly found solutions. Task starting and ending times for each worker were examined for consistency

regarding station and global cycle times, as well as precedence relation imposed orders. Filling their

purpose to validate the proposed BDA’s reliability, these tests are made available along with task-

station-worker allocation results in the supporting information files for reproducibility purposes.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 6: Results comparison for medium-size instances between BDA, ACO algorithm, and GSA heuristic.

Problem CT NW BDA ACO/GSA

St UB LB Gap CPU SCPU Cut1 Cut2 HT Obj CPU1

Tonge 176 2 * 2112 2112 0.00% 16.87 3.86 4668 0 755 2112 14.54

4 * 2110 2110 0.00% 36.99 30.86 610 5940 1217 2110 27.82

6 * 2110 2110 0.00% 56.15 50.26 0 7720 1683 2110 41.17

364 2 * 1005 1005 0.00% 19.89 19.57 534 0 104 1007 –

4 * 1004 1004 0.00% 0.95 0.76 0 24 6 1007 –

6 * 1004 1004 0.00% 17.51 16.99 0 162 53 1007 –

410 2 * 905 905 0.00% 62.74 62.68 35 0 1 905 12.07

4 * 903 903 0.00% 13.94 13.86 0 16 2 904 24.71

6 * 903 903 0.00% 91.80 91.68 0 96 12 904 37.10

468 2 * 804 804 0.00% 0.18 0.14 0 0 0 804 –

4 * 803 803 0.00% 273.54 273.41 0 48 8 804 –

6 * 803 803 0.00% 161.06 160.93 0 52 2 804 –

527 2 * 704 704 0.00% 0.18 0.15 4 0 0 704 13.35

4 * 703 703 0.00% 119.85 119.82 0 57 9 703 26.35

6 * 703 703 0.00% 575.63 575.57 0 132 32 703 38.75

Arcus1 5048 2 * 1610 1610 0.00% 23.94 5.44 970 0 53 1610 17.95

4 * 1610 1610 0.00% 153.58 99.78 0 1200 56 1610 34.42

6 * 1610 1610 0.00% 122.59 92.61 0 1120 65 1610 50.92

5853 2 * 1408 1408 0.00% 8.17 0.34 70 0 8 1410 –

4 * 1408 1408 0.00% 12.25 0.86 0 80 4 1410 –

6 * 1408 1408 0.00% 13.66 0.54 0 20 1 1410 –

6842 2 * 1207 1207 0.00% 3.45 3.06 472 0 34 1208 –

4 * 1207 1207 0.00% 52.21 51.72 0 544 55 1208 –

6 * 1207 1207 0.00% 160.19 159.68 0 656 80 1208 –

7571 2 * 1106 1106 0.00% 1.18 1.05 18 0 3 1106 17.20

4 * 1106 1106 0.00% 5.90 5.79 0 48 3 1106 32.57

6 * 1106 1106 0.00% 38.80 38.66 0 90 26 1106 47.78

8412 2 * 1006 1006 0.00% 0.22 0.09 0 0 0 1006 –

4 * 1006 1006 0.00% 0.32 0.22 0 0 0 1006 –

6 * 1006 1006 0.00% 0.22 0.12 0 0 0 1006 –

8998 2 * 905 905 0.00% 30.60 30.38 12 0 2 906 –

4 * 905 905 0.00% 2.88 2.72 0 12 0 906 –

6 * 905 905 0.00% 0.67 0.50 0 18 3 906 –

10816 2 * 804 804 0.00% 87.83 84.74 485 0 54 805 17.10

4 * 804 804 0.00% 2.46 0.03 0 0 0 805 32.78

6 * 804 804 0.00% 14.17 11.27 0 170 4 805 47.45

Mukherje 176 2 * 2516 2516 0.00% 52.07 12.39 4368 0 392 2516 30.28

4 I 2513 2512 0.04% 1h 3479.76 20072 13793 2744 2513 60.99

6 I 2513 2512 0.04% 1h 3478.79 312 11089 453 2513 95.78

248 2 * 1810 1810 0.00% 29.61 17.84 6750 0 1073 1810 30.71

4 I 1808 1807 0.06% 1h 3523.20 528 7112 982 1808 63.44

6 * 1807 1807 0.00% 785.02 78.75 56 868 59 1807 98.48

351 2 I 1308 1307 0.08% 1h 3495.71 10800 0 550 1308 31.02

4 I 1307 1306 0.08% 1h 3520.48 3115 4095 332 1307 64.09

6 * 1306 1306 0.00% 188.23 187.51 0 90 6 1306 99.53

1As reported in Kellegöz (2017).

MMMMMMMMMM

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 7: Results comparison for large-size instances between BDA, ACO algorithm, and GSA heuristic.

Problem CT NW BDA ACO/GSA

St UB LB Gap CPU SCPU Cut1 Cut2 HT Obj CPU1

Arcus2 5755 2 * 2714 2714 0.00% 331.42 303.84 5888 0 554 2716 26.22

4 * 2712 2712 0.00% 1900.07 1880.69 1391 3965 572 2713 48.78

6 * 2712 2712 0.00% 861.55 840.12 0 2236 183 2713 73.00

8847 2 * 1811 1811 0.00% 2593.92 2521.77 25839 0 4116 1812 –

4 * 1810 1810 0.00% 304.24 287.28 55 1562 23 1812 –

6 * 1810 1810 0.00% 12.06 1.53 0 253 0 1812 –

10027 2 * 1609 1609 0.00% 151.24 150.42 2241 0 312 1610 –

4 * 1607 1607 0.00% 1147.94 1134.54 90 2808 240 1610 –

6 * 1607 1607 0.00% 676.12 669.81 0 837 37 1610 –

10743 2 * 1508 1508 0.00% 328.60 303.63 1323 0 34 1509 31.41

4 * 1507 1507 0.00% 610.87 608.03 8 1040 98 1508 61.87

6 * 1507 1507 0.00% 558.84 555.84 0 544 32 1508 92.53

11378 2 * 1407 1407 0.00% 194.89 193.96 904 0 266 1409 –

4 * 1406 1406 0.00% 1298.10 1296.82 1547 1330 388 1409 –

6 * 1406 1406 0.00% 1636.27 1634.42 0 3374 742 1409 –

17067 2 * 905 905 0.00% 0.26 0.17 5 0 0 905 29.44

4 * 904 904 0.00% 119.42 119.11 0 195 9 905 57.68

6 * 904 904 0.00% 339.91 339.42 0 720 25 905 84.96

Barthol2 84 2 I 5127 5126 0.02% 3599.25 2.51 4576 0 14 5126 68.00

4 I 5116 5113 0.06% 3602.33 1839.28 90272 13648 1460 5116 138.64

6 I 5114 5111 0.06% 3608.81 2603.57 11102 46060 628 5114 224.44

106 2 I 4121 4020 2.45% 3600.22 2.90 2688 0 186 4121 68.96

4 I 4111 4010 2.46% 3615.90 2175.32 10751 1664 256 4113 145.09

6 I 4110 4010 2.43% 3601.54 3192.26 1896 7200 245 4112 234.68

170 2 * 2513 2513 0.00% 20.37 2.33 143 0 9 2513 67.18

4 * 2507 2507 0.00% 199.16 196.54 40 24 16 2508 144.08

6 * 2506 2506 0.00% 169.62 168.35 24 16 4 2508 232.94

Barthold 403 2 * 1407 1407 0.00% 218.58 217.96 140 0 7 1407 66.10

4 * 1404 1404 0.00% 70.28 70.02 0 5 0 1405 143.39

6 * 1404 1404 0.00% 1004.29 1002.56 25 120 12 1405 228.79

513 2 * 1106 1106 0.00% 2.69 1.90 0 0 0 1106 66.57

4 * 1103 1103 0.00% 1708.59 1708.24 168 16 17 1104 142.99

6 * 1103 1103 0.00% 3797.85 3794.86 120 300 28 1104 226.17

805 2 * 704 704 0.00% 75.13 74.83 8 0 0 704 66.55

4 I 703 702 0.14% 3640.35 3638.28 183 174 0 703 140.12

6 I 703 702 0.14% 3701.60 3700.92 3 333 0 703 216.74

1As reported in Kellegöz (2017).

6. Conclusions

The Multi-manned Assembly Line Balancing Problem (MALBP) with the objective of minimis-

ing the number of workers and stations has been addressed in this study. The existing literature on

MALBPs indicated a lack of efficient exact solution methods for these problems, since past mathe-

matical formulations were only able to solve some instances with up to 45 tasks. This paper’s main

contribution is solving to optimality MALBPs up to 148 tasks by decomposing the original prob-

lem and implementing a Benders’ decomposition algorithm employing combinatorial cuts during its

execution.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A new Mixed-Integer Linear Programming (MILP) model was developed along with several valid

inequalities that work as symmetry break constraints to solve the optimisation problem. This pro-

posed formulation outperforms previously presented monolithic mathematical formulations in terms

of solution quality and computational processing time. By analysing the MALBP’s structure, it is

possible to infer that the problem is divisible hierarchically into a Master Problem (MP) and a Slave

Problem (SP), and hence forging a Benders’ Decomposition Algorithm (BDA). After adapting several

logical cuts inherited from project scheduling problems, the MP solves task-station and worker-station

assignment problems, whilst the SP deals with the task-worker scheduling problem for each station,

detects infeasibility, and generates combinatorial Benders’ cuts to be added into MP as lazy con-

straints during BDA’s execution. The proposed BDA was compared to previously developed methods

and was shown to produce improved results while maintaining reasonable CPU time. In total, 42 new

optimal solutions were obtained, 2 integer solutions were improved, and 18 previously known solutions

were proven optimal out of a dataset with 131 instances.

Allowing multiple workers to perform different tasks simultaneously in the same station is a natural

extension of the simpler version of the problem, as well as a notable realistic feature widely employed

in industries manufacturing large-size products. Nonetheless, incorporating more practical extensions

such as line layout (U-line, parallel stations), product variety (multi and mixed model lines), and

zoning restriction in the BDA is a desirable modification. Further research should focus on doing

so and, in order to mitigate computational burden, might include balancing and project scheduling

heuristics for the master and slave problems, respectively.

Acknowledgement

The authors would like to thank the financial support from Fundação Araucária (Agreement

041/2017 FA–UTFPR–RENAULT), and CNPq (Grants 406507/2016-3 and 307211/2017-7).

References

Akagi, F., Osaki, H., & Kikuchi, S. (1983). A method for assembly line balancing with more than one

worker in each station. International Journal of Production Research, 21 , 755–770. doi:10.1080/

00207548308942409.

Akpinar, S., Elmi, A., & Bekta, T. (2017). Combinatorial Benders cuts for assembly line balancing

problems with setups. European Journal of Operational Research, 259 , 527–537. doi:10.1016/j.

ejor.2016.11.001.

Bartholdi, J. J. (1993). Balancing two-sided assembly lines: A case study. International Journal of

Production Research, 31 , 2447–2461. doi:10.1080/00207549308956868.

Battäıa, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their solution approaches.

International Journal of Production Economics, 142 , 259–277. doi:10.1016/j.ijpe.2012.10.020.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Bautista, J., & Pereira, J. (2009). A dynamic programming based heuristic for the assembly line

balancing problem. European Journal of Operational Research, 194 , 787–794. doi:10.1016/j.ejor.

2008.01.016.

Baybars, . (1986). A Survey of Exact Algorithms for the Simple Assembly Line Balancing Problem.

Management Science, 32 , 909–932. doi:10.1287/mnsc.32.8.909.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line

balancing. European Journal of Operational Research, 168 , 694–715. doi:10.1016/j.ejor.2004.

07.023.

Becker, C., & Scholl, A. (2009). Balancing assembly lines with variable parallel workplaces: Problem

definition and effective solution procedure. European Journal of Operational Research, 199 , 359–

374. doi:10.1016/j.ejor.2008.11.051.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems.

Numerische Mathematik , 4 , 238–252. doi:10.1007/BF01386316.

Cevikcan, E., Durmusoglu, M. B., & Unal, M. E. (2009). A team-oriented design methodology for

mixed model assembly systems. Computers & Industrial Engineering , 56 , 576–599. doi:10.1016/

j.cie.2007.11.002.

Chen, Y. Y. (2017). A hybrid algorithm for allocating tasks, operators, and workstations in multi-

manned assembly lines. Journal of Manufacturing Systems, 42 , 196–209. doi:10.1016/j.jmsy.

2016.12.011.

Codato, G., & Fischetti, M. (2006). Combinatorial Benders’ Cuts for Mixed-Integer Linear Program-

ming. Operations Research, 54 , 756–766. doi:10.1287/opre.1060.0286.

Côté, J.-f., Dell’Amico, M., & Iori, M. (2014). Combinatorial Benders’ Cuts for the Strip Packing

Problem. Operations Research, 62 , 643–661. doi:10.1287/opre.2013.1248.

Dimitriadis, S. G. (2006). Assembly line balancing and group working: A heuristic procedure for

workers’ groups operating on the same product and workstation. Computers & Operations Research,

33 , 2757–2774. doi:10.1016/j.cor.2005.02.027.

Fakhri, A., Ghatee, M., Fragkogios, A., & Saharidis, G. K. D. (2017). Benders decomposition with

integer subproblem. Expert Systems with Applications, 89 , 20–30. doi:10.1016/j.eswa.2017.07.

017.

Fattahi, P., & Roshani, A. (2011). A mathematical model and ant colony algorithm for multi-manned

assembly line balancing problem. International Journal of Advanced Manufacturing Technology ,

53 , 363–378. doi:10.1007/s00170-010-2832-y.

Gurobi Optimization (2019). Gurobi Optimizer reference manual.

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Hazir, Ö., & Dolgui, A. (2013). Assembly line balancing under uncertainty: Robust optimization

models and exact solution method. Computers & Industrial Engineering , 65 , 261–267. doi:10.

1016/j.cie.2013.03.004.

Hazir, Ö., & Dolgui, A. (2015). A decomposition based solution algorithm for U-type assembly line

balancing with interval data. Computers & Operations Research, 59 , 126–131. doi:10.1016/j.cor.

2015.01.010.

Hillier, F., & Lieberman, G. (2015). Introduction to Operations Research. (10th ed.). Heidelberg: Mc

Graw Hill.

Hoffmann, T. (1963). Assembly line balancing with a precedence matrix. Management Science, 9 ,

551–562. doi:10.1287/mnsc.9.4.551.

Kazemi, A., & Sedighi, A. (2013). A cost-oriented model for balancing mixed-model assembly lines

with multi-manned workstations. International Journal of Services and Operations Management ,

16 , 289. doi:10.1504/IJSOM.2013.056765.

Kellegöz, T. (2017). Assembly line balancing problems with multi-manned stations: a new mathemat-

ical formulation and Gantt based heuristic method. Annals of Operations Research, 253 , 377–404.

doi:10.1007/s10479-016-2156-x.

Kellegöz, T., & Toklu, B. (2012). An efficient branch and bound algorithm for assembly line balancing

problems with parallel multi-manned workstations. Computers & Operations Research, 39 , 3344–

3360. doi:10.1016/j.cor.2012.04.019.

Kellegöz, T., & Toklu, B. (2015). A priority rule-based constructive heuristic and an improvement

method for balancing assembly lines with parallel multi-manned workstations. International Journal

of Production Research, 53 , 736–756. doi:10.1080/00207543.2014.920548.

Klein, R. (2000). Scheduling of Resource-Constrained Projects. (1st ed.). Springer US. doi:10.1007/

978-1-4615-4629-0.

Lopes, T. C., Michels, A. S., Sikora, C. G. S., Molina, R. G., & Magatão, L. (2018). Balancing and

cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines. International

Journal of Production Economics, 203 , 216–224. doi:10.1016/j.ijpe.2018.06.012.

Lopes, T. C., Sikora, C. G. S., Molina, R. G., Schibelbain, D., Rodrigues, L. C. A., & Magatão, L.

(2017). Balancing a robotic spot welding manufacturing line: An industrial case study. European

Journal of Operational Research, 263 , 1033–1048. doi:10.1016/j.ejor.2017.06.001.

Magnanti, T. L., & Wong, R. T. (1981). Accelerating Benders Decomposition: Algorithmic Enhance-

ment and Model Selection Criteria. Operations Research, 29 , 464–484. doi:10.2307/170108.

Maurer, W. D., & Lewis, T. G. (1975). Hash Table Methods. ACM Computing Surveys (CSUR), 7 ,

5–19. doi:10.1145/356643.356645.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Michels, A. S., Lopes, T. C., Sikora, C. G. S., & Magatão, L. (2018). The Robotic Assembly Line

Design (RALD) problem: Model and case studies with practical extensions. Computers & Industrial

Engineering , 120 , 320–333. doi:10.1016/j.cie.2018.04.010.

Moon, I., Logendran, R., & Lee, J. (2009). Integrated assembly line balancing with re-

source restrictions. International Journal of Production Research, 47 , 5525–5541. doi:10.1080/

00207540802089876.

Moreira, M. C. O., Miralles, C., & Costa, A. M. (2015). Model and heuristics for the Assembly

Line Worker Integration and Balancing Problem. Computers & Operations Research, 54 , 64–73.

doi:10.1016/j.cor.2014.08.021.

Osman, H., & Baki, M. F. (2014). Balancing transfer lines using Benders decomposition and ant colony

optimisation techniques. International Journal of Production Research, 52 , 1334–1350. doi:10.

1080/00207543.2013.842017.

Özcan, U. (2010). Balancing stochastic two-sided assembly lines: A chance-constrained, piecewise-

linear, mixed integer program and a simulated annealing algorithm. European Journal of Operational

Research, 205 , 81–97. doi:10.1016/j.ejor.2009.11.033.

Özcan, U., & Toklu, B. (2009). Balancing of mixed-model two-sided assembly lines. Computers &

Industrial Engineering , 57 , 217–227. doi:10.1016/j.cie.2008.11.012.

Pape, T. (2015). Heuristics and lower bounds for the simple assembly line balancing problem type 1:

Overview, computational tests and improvements. European Journal of Operational Research, 240 ,

32–42. doi:10.1016/j.ejor.2014.06.023.

Rahmaniani, R., Crainic, T. G., Gendreau, M., & Rei, W. (2017). The Benders decomposition

algorithm: A literature review. European Journal of Operational Research, 259 , 801–817. doi:10.

1016/j.ejor.2016.12.005.

Roshani, A., & Giglio, D. (2017). Simulated annealing algorithms for the multi-manned assembly

line balancing problem: minimising cycle time. International Journal of Production Research, 55 ,

2731–2751. doi:10.1080/00207543.2016.1181286.

Roshani, A., & Nezami, F. G. (2017). Mixed-model multi-manned assembly line balancing problem:

A mathematical model and a simulated annealing approach. Assembly Automation, 37 , 34–50.

doi:10.1108/AA-02-2016-016.

Roshani, A., Roshani, A., Roshani, A., Salehi, M., & Esfandyari, A. (2013). A simulated annealing

algorithm for multi-manned assembly line balancing problem. Journal of Manufacturing Systems,

32 , 238–247. doi:10.1016/j.jmsy.2012.11.003.

Scholl, A., & Klein, R. (1997). SALOME: A bidirectional branch-and-bound procedure for assembly

line balancing. INFORMS Journal on Computing , 9 , 319–334. doi:10.1287/ijoc.9.4.319.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Sewell, E. C., & Jacobson, S. H. (2012). A Branch, Bound, and Remember Algorithm for the Simple

Assembly Line Balancing Problem. INFORMS Journal on Computing , 24 , 433–442. doi:10.1287/

ijoc.1110.0462.

Sikora, C. G. S., Lopes, T. C., & Magatão, L. (2017). Traveling worker assembly line (re)balancing

problem: model, reduction techniques, and real case studies. European Journal of Operational

Research, 259 , 949–971. doi:10.1016/j.ejor.2016.11.027.

Sternatz, J. (2014). Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly

line balancing problems in automotive industry. European Journal of Operational Research, 235 ,

740–754. doi:10.1016/j.ejor.2013.11.005.

Walsh, T. (2006). General Symmetry Breaking Constraints. Principles and Practice of Constraint

Programming - CP , 4204 , 650–664. doi:10.1007/11889205_46.

Yazgan, H. R., Beypinar, I., Boran, S., & Ocak, C. (2011). A new algorithm and multi-response

Taguchi method to solve line balancing problem in an automotive industry. International Journal

of Advanced Manufacturing Technology , 57 , 379–392. doi:10.1007/s00170-011-3291-9.

Yilmaz, H., & Yilmaz, M. (2015). Multi-manned assembly line balancing problem with balanced load

density. Assembly Automation, 35 , 137–142. doi:10.1108/AA-05-2014-041.

Yilmaz, H., & Yilmaz, M. (2016a). A multi-manned assembly line balancing problem with classified

teams: A new approach. Assembly Automation, 36 , 51–59. doi:10.1108/AA-04-2015-035.

Yilmaz, H., & Yilmaz, M. (2016b). Note to: a mathematical model and ant colony algorithm for

multi-manned assembly line balancing problem. International Journal of Advanced Manufacturing

Technology , 89 , 1935–1939. doi:10.1007/s00170-016-9223-y.

29

