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Abstract

Unpredictable crises such as pandemics, as well as predictable oscillations such as season-

ality, can produce significant demand fluctuations. Although it is possible to adapt the

manufacturing system to these perturbations, there are significant opportunities in antici-

pating them in the design stage. This paper proposes the Economically Robust Assembly

Line Balancing Problem (ERALBP), which addresses the issue by designing assembly

lines to allow flexible alternation between two or more cycle times. A Mixed-Integer

Linear Programming (MILP) model is introduced to describe the problem. Moreover,

a heuristic procedure is implemented in order to quickly produce high-quality solutions.

While the model failed to find solutions for most medium and large instances, the heuris-

tic quickly produced high-quality solutions, reaching low solution gaps even for large

instances. Finally, a case study with industrial data further highlights the advantages of

the proposed strategy: by anticipating demand fluctuations, the proposed heuristic’s solu-

tion facilitates alternation between two demand scenarios, both with the optimal number

of stations. This approach is less costly than the re-balancing alternative, which requires

re-assigning and re-positioning tasks. By enabling companies to perform this fast switch-

ing between output rates, we allow them to benefit from economic opportunities tied to

increased seasonal effects or unexpected demand spikes.
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1. Introduction

Reliable information is a default assumption of Operations Research (OR). It means

that most OR-related problems are addressed in stable and generally predictable con-

ditions. However, internal and external uncertainties are often unavoidable. The exist-

ing stochastic programming (Birge & Louveaux, 2011) and robust optimization (Ben-Tal

et al., 2009) literature attempt to deal with these inescapable unreliabilities. The recent

COVID-19 outbreak serves as an example (Hui et al., 2020). A new virus had been iden-

tified in late 2019 and a few months later, in early 2020, it became a global pandemic.

This situation led most countries to adopt strict social and economic measures to prevent

infections from spreading.

As a consequence, these imposed restrictions naturally impacted the demand for many

manufactured goods. Depending on the industry, their products recently experienced

sharp drops or spikes in demand due to the pandemic itself, as well as resulting gov-

ernment actions (e.g. border closures, quarantines) and customer decisions (e.g. panic

buying). The ability to adequately respond to such perturbations and mitigate their im-

pact has an immediate managerial and societal interest. It also motivates research on the

development of more flexible manufacturing systems that can switch from “lockdown”

to “recovery” outputs. In particular, this paper investigates how this concept can be

applied to assembly lines through economically robust balancing strategies, giving rise to

the proposed Economically Robust Assembly Line Balancing Problem (ERALBP).

Recently, many businesses have chosen or been forced to change their production rates.

When an abrupt output reduction is deemed necessary (e.g. automotive industries), a

common approach is to implement cutbacks on the number or duration of shifts. How-

ever, if an output increase is desired (e.g. healthcare products), these approaches might be

more limited – especially if the factory is already operating at or near its maximum weekly

hours. In those cases, increasing the production rate is necessary to achieve the desired

higher output. Nonetheless, due to differences in scale and nature, not all businesses can

easily incorporate changes in their production rates. Still, there are relevant economic op-

portunities in switching from “lockdown” to “recovery” outputs for both types in specific

contexts. For industries that can handle these alternations, this means a better response

to seasonal effects or sudden demand spikes. For those that cannot, this means designing

a manufacturing unit planned for lower initial throughput, while also anticipating a prob-

able (or even intended) higher capacity for the future – this may translate into a more

efficient transition later on. Thus, companies embracing this strategy might be capable

of preventing some negative impacts caused by an eventual similar disruption.

This paper considers a single-model assembly line balancing problem and investigates

how these manufacturing systems can be efficiently designed for two (or more) target

throughput rates. This economically robustness entails a comprehensive plan to posi-

tion task execution and machinery along the line in a manner that allows efficient line

partitions under optimized number of stations for each cycle time. This allows the oper-
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ation to occur under two (or more) alternating target production rate without disturbing

the settled configuration’s order. The remainder of this paper is organized as follows.

Section 2 extensively reviews the relevant literature, discusses its shortcomings regard-

ing the present question, and justifies this work. Section 3 defines the studied problem

and presents a Mixed-Integer Linear Programming (MILP) model to represent the pro-

posed flexibility. Section 4 introduces a heuristic method to achieve good solutions for the

proposed problem. The MILP model and the heuristic method are both applied to well-

known benchmark datasets and their computational experiments’ results are reported in

Section 5. Furthermore, Section 6 presents an industrial case study, which applies this

paper’s techniques to practical data of a gearbox assembly line. Finally, key conclusions

are summarized in Section 7.

2. Related Works

Assembly line balancing is a classical optimization problem tied to their specific manu-

facturing context (Scholl, 1999). Its simplest version, the Simple Assembly Line Balancing

Problem (SALBP), was first formalized by Baybars (1986) and consists in assigning tasks

with deterministic durations to (work)stations, subject to precedence relations between

tasks and cycle time requirements for each station. Line balancing problems are usually

NP-hard as they subsume bin packing as a particular case (Álvarez-Miranda & Pereira,

2019). Previous works have incorporated relevant practical considerations to line balanc-

ing problems, such as ergonomic risks (Bortolini et al., 2017), ecological considerations

(Liu et al., 2020), space constraints (Zhang et al., 2020), workstation planning (Defersha

& Mohebalizadehgashti, 2018), worker variability (Öner-közen et al., 2017), and internal

storage (Lopes et al., 2021).

Most of the relevant literature on robust or stochastic assembly line balancing focus

on task durations in terms of parameter uncertainty. A classification of assembly line

balancing problem in the literature, proposed by Boysen et al. (2008), considers only

two elements related to uncertainty: the processing times can be stochastic or the cycle

time restriction must be valid for a given probability. The former is usually used as a

restriction for uncertain processing times, taking the form of a chance constraint (for

instance, the cycle time restriction must be valid in 95% of the possible realizations (Kao,

1976)). More recent general reviews on assembly line balancing (Battäıa & Dolgui, 2013;

Eghtesadifard et al., 2020) notice an increase in the number of contributions dealing with

uncertainty. However, the classification of Battäıa & Dolgui (2013) only extends the

uncertain processing times classification by considering the subcategories of stochastic,

fuzzy, and interval processing times. Even specific surveys on stochastic (Bentaha et al.,

2015) and robust (Hazir et al., 2019) approaches on assembly line balancing limit their

scope to uncertainty in the processing times.

Nevertheless, there are other sources of uncertainty in the industrial production that

are less explored in the literature. This manuscript focuses on product demand as uncer-
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tainty drive and how to hedge against this variation. The demand for products naturally

changes as they are introduced to the market, mature, and are discontinued. The demand

levels are also affected by marketing efforts. They are prone to market changes such as

economic crises or global pandemics (Ivanov & Dolgui, 2020).

There are two observable trends in the literature related to demand changes. The first

one considers the problem of re-optimizing an existing system for another production situ-

ation. In contrast, the second trend approaches the design of the assembly line foreseeing

changes in the demand, so that the system is either robust or adapt well to variation.

The former approach is called re-balancing (Battäıa & Dolgui, 2013) and considers the

invested capital on an assembly line’s stations and equipment. Moving heavy machinery

and retraining workers impose costs, so that re-balancing approaches usually restrict the

amount or costs of the reallocations. Examples are Gamberini et al. (2006), Makssoud

et al. (2015), and Sikora et al. (2017). They respectively consider the maximization of a

similarity index among multiple objectives, the minimization of the number of changes,

or costly reassignments as fixed.

The literature that prepares the design of an assembly system coping with demand

variation is said to be flexible (Simaria et al., 2009), robust (Chica et al., 2016), or prepared

for a demand variation environment (Li & Gao, 2014). The works from Simaria et al.

(2009), Li & Gao (2014), Yang & Gao (2016), Chica et al. (2016), Chica et al. (2019),

and Sikora (2021) all consider the balancing problem of an assembly line considering that

demand can be modeled as a finite set of demand scenarios.

Simaria et al. (2009) consider the design of an assembly line that must operate well with

different demand levels. The authors deal with a multi-product assembly line, however,

only one product is produced per scenario. The multiple scenarios determine which and

how much must be produced. The proposed solution procedure is based on a hierarchical

approach: first, the line is balanced for the most loaded demand scenario; in the second

level, workers are assigned to tasks and stations. In the first problem, the assignments

of tasks to stations are fixed, representing the installation of equipment and machines.

At the second level, tasks are assigned to workers, who can perform tasks in multiple

stations in a U-shaped assembly line. For each demand of each scenario, the number of

workers used is minimized. The procedure relies on a hierarchical approach in which the

assignments found in the first stage are fixed for the second stage. There is no iteration

between the stages, and both steps are solved with metaheuristics.

Li & Gao (2014) use overtime as a measure to deal with demand variability. Their

system consists of a mixed-model assembly line producing under a collection of demand

scenarios. The authors minimize the system’s running costs composed of regular (linked to

the number of stations) and overtime costs. The assignment of tasks to stations represents

the allocation of equipment, which must be equal for all demand scenarios, along with

the number of stations and workers. For each demand, however, the cycle time and the

amount of overtime can be specified.
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The consideration of local reassignments of tasks is modeled in Yang & Gao (2016).

The authors consider the training of workers as the bottleneck for reassigning tasks in

the assembly line. The approach is based on cross-training, that is, workers are trained

for the tasks in their station plus the tasks of an adjacent station. The task allocation is

then assigned to skill zones instead of directly to stations. In each demand scenario, tasks

within each skill zone can be reassigned to workers with a specific ability. The method is

used to minimize the number of skill zones, which translates to minimizing workstations.

Chica et al. (2016) and Chica et al. (2019) focus on the robustness of the task al-

locations with respect to processing time and area restrictions. The modeled assembly

line works with multiple products, for which one assignment of tasks to stations is se-

lected. In Chica et al. (2016), a finite set of scenarios contains possible demand values

for each product. The problem is solved in a multi-objective framework that minimizes

the number of stations and their length (related to the required area), while maximizing

several robustness criteria. In Chica et al. (2019), the authors extend the approach using

simulation to create representative demand scenarios.

In Sikora (2021), the balancing of a mixed-model assembly line is combined with

the products’ sequencing for a set of demand scenarios. The approach considers the

assignment of tasks to stations to be fixed for all scenarios, while the sequencing can be

solved independently per scenario.

From the presented literature on demand variation, two groups of uncertainty can be

identified – the first deals with variations of relative demands in multiple model produc-

tion. The number of stations (and workers) in Li & Gao (2014), Yang & Gao (2016),

Chica et al. (2016), Chica et al. (2019), and Sikora (2021) remains constant for all scenar-

ios. Different demands affect the average processing times (and area requirements) in the

stations, but the total production levels are roughly constant. Alternatively, Simaria et al.

(2009) use a different workforce size for each scenario, so that different absolute demand

values strongly vary. Some flexibility for total demand variation is also encountered in Li

& Gao (2014). They deal with the issue by employing overtime.

To the best of the author’s knowledge, Simaria et al. (2009) is the only reference that

considers the number of workers as a reaction to total demand variation. Nonetheless,

their proposed method is based on a hierarchical approach without iteration between the

assignment of tasks to stations and the scenario-specific assignments of workers to stations.

Therefore, there is a gap in the literature to examine the integrated problem of balancing

assembly lines and workforce planning for uncertain total demand levels. In this paper,

we address such gap by extending the SALBP to consider multiple demand scenarios at

the line design stage. The line layout is optimized to cope with different throughput

requirements while not incurring in any re-balancing costs. Hence, we formally define the

proposed ERALBP in Section 3 and develop a specialized heuristic procedure to efficiently

solve it in Section 4.
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3. Problem Description

The studied ERALBP takes more than one economic scenario (target cycle time) into

account. It considers the standard SALBP definitions and its simplification hypotheses

(Baybars, 1986). Tasks (t ∈ T ) have known durations (Dt), are indivisible, subject to

precedence relations ((t1, t2) ∈ R), and must each be assigned to a station (s ∈ S).

Stations are equally equipped and the task-station assignment does not affect the task’s

duration. Finally, for the SALBP type-1, the demand is known and the sum of processing

times in each station is bounded by the line’s cycle time (C).

Here, an observation is necessary: stations are only considered equally equipped in

a design stage. However, upon implementation of the chosen design, equipment is dis-

tributed to stations as a function of the tasks they perform. This distinction is relevant

because some of the necessary equipment can be heavy or effectively immovable. Thus,

by relaxing this simplification hypothesis, we take a step to further extend the classical

SALBP into the proposed ERALBP.

Additionally, it is assumed that the line operates with a continuous conveyor and that

tasks are performed on the product while it is moving. This continuously paced line

control is usually considered the standard assumption of the relevant literature (Boysen

et al., 2008). Assuming that the line operates at a fixed speed, physical positions in

the line can be measured in temporal units from its start. Its continuous nature also

implies that equipment is continuously distributed to reflect the sequence in which tasks

are performed.

The ERALBP also evaluates multiple cycle times. While the model described herein

can represent any number of demand scenarios, this paper focuses on only two. The first

one represents the higher demand configuration, and is assumed to be the one with a

lower cycle time. The high and low demands are modeled by considering two scenarios

(k ∈ K), each with its own target cycle time (Ck).

The multiple scenario extension requires assignment decisions to be explicitly taken

for each k. Thus, binary variables to control task-station assignments for each scenario k

are created: xt,s,k = 1 if task t is performed at station s. Naturally, each scenario may

need a different number of stations, so we need station opening variables for each scenario:

ys,k = 1 if station s is active in scenario k. However, as the switching process between

output rates cannot incur in any re-balancing costs, there can only be a single line layout

– which in this case translates into a sequence of tasks. This procedure is controlled with a

binary variable for each pair of different tasks t1 and t2, where zt1,t2 = 1 if t1 is performed

after t2. While scenarios differ in number of stations and cycle time, task durations (Dt),

task sequence (zt1,t2), and precedence relations (R) must be the same for all scenarios. A

MILP model to represent the ERALBP is given by Expressions (1)–(10).
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Minimize
∑

k ∈ K

wk ·
∑
s ∈ S

ys,k (1)

subject to:∑
s ∈ S

xt,s,k = 1 ∀ t ∈ T, k ∈ K (2)∑
s ∈ S

s · xt1,s,k ≤
∑
s ∈ S

s · xt2,s,k ∀ (t1, t2) ∈ R, k ∈ K (3)∑
t ∈ T

Dt · xt,s,k ≤ Ck ∀ s ∈ S, k ∈ K (4)

ys,k ≥ xt,s,k ∀ t ∈ T, s ∈ S, k ∈ K (5)

ys,k ≤ ys−1,k ∀ s ∈ S : s > 1, k ∈ K (6)

xt,s = 0 ∀ t ∈ T, k ∈ K, s /∈ [Et,k, ..., Lt,k] (7)

zt1,t2 · Smaxk
≥

∑
s ∈ S

s · (xt2,s,k − xt1,s,k) ∀ t1, t2 ∈ T : t2 > t1, k ∈ K (8)

(1− zt1,t2) · Smaxk
≥

∑
s ∈ S

s · (xt1,s,k − xt2,s,k) ∀ t1, t2 ∈ T : t2 > t1, k ∈ K (9)

and:

xt1,s,k, ys,k, zt1,t2 ∈ {0, 1} ∀ t1, t2 ∈ T, s ∈ S, k ∈ K (10)

Expression (1) presents the goal function, i.e. minimize the weighted sum of the num-

ber of required stations (wk states the relative importance of scenario k). For all scenar-

ios, the basic line balancing constraints apply: all tasks must be assigned (Equation (2)),

precedence relations respected (Inequality (3)) as well as the cycle time (Inequality (4)).

Inequality (5) states that the balancing decisions (x) are contingent on the station being

active (y). Inequality (6) states a simple symmetry break. Expression 7 filters the prob-

lem’s search space by discarding task-station allocations that necessarily imply on cycle

time violations. This is done by using the earliest (Et,k) and latest (Lt,k) stations concept

(Scholl & Becker, 2006) for task t and each cycle time Ck. Constraints (8) and (9) demand

that either t1 is performed after t2 or the reverse, imposing a single task sequence for all

scenarios. In these constraints, Smaxk
states an upper bound on the number of stations

for each scenario k. Lastly, Expression 10 states the binary requirements for variables.

Given that the SALBP is NP-hard, hence, so is ERALBP: it reduces to SALBP

in the case of a single scenario or two equal ones. Therefore, one can anticipate the

herein presented MILP model (1)–(10) to perform poorly when attempting to solve large

instances. Due to the expected combinatorial complexity of the proposed ERALBP, we

introduce a heuristic procedure in Section 4 to quickly produce high-quality solutions

for large instances of the problem. Finally, in order to demonstrate the necessity of a

specialized method for the proposed problem, computational experiments are conducted

in Section 5 to assess the performance of the MILP model and the heuristic procedure.
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While the proposed method and the experiments in this paper focus on two cycle times,

Appendix A presents a generalized version of the method for more cycle times.

4. Heuristic Procedure

The proposed approximate solution procedure consists in solving a SALBP instance

with the first cycle time (C1) and post-processing its solution to define a valid task se-

quence for the instance. Task assignments are fixed for the C1 stations and task sequence

within each C1 station is optimized for C2 subject to the problems’ original precedence

constraints. This ensures that the number of stations required for C1 is not altered. Given

an ERALBP instance with two cycle times C1 and C2 such that C1 < C2, an associated

SALBP problem can be defined by setting its cycle time as the smallest value, i.e. C1.

For practical sizes, this instance can typically be efficiently solved using methods such as

SALOME (Scholl & Becker, 2006) or Branch, Bound, and Remember (Sewell & Jacobson,

2012). The procedure is not guaranteed to reach the global optimum number of stations

for C2 because the SALBP solution imposes additional precedence constraints for C2:

all tasks assigned to the sth C1 station must be performed before those assigned to the

(s + 1)th one. Naturally, the problem’s original precedence relations still impose partial

ordering to the tasks within each station.

Given these additional precedence requirements, an optimized task sequence for the

second cycle time can be obtained by solving a set of small precedence-constrained knap-

sack problems. This is achieved constructively by post-processing the SALBP’s solution,

as presented by Algorithm 1. In it, NS1 states the number of stations for C1 in the given

solution.

Algorithm 1 Post-processing given SALBP solution

1: NS2 ← 1 . Open the first station for C2

2: A← C2 . Currently available time at opened station for C2

3: Ts ← set of tasks assigned to sth station of SALBP’s solution

4: TaskSequence ← Empty List of Integers

5: for s = 1 to NS1 do . for each station in SALBP’s solution

6: if
∑

t ∈ Ti
Dt ≤ A then . All tasks in Ti fit currently opened station

7: A← A−
∑

t∈Ti
Dt . Decrease available time at current C2 station

8: TaskSequence.Add(Ti) . at the end, in any topological order

9: else

10: FitT ← PrecKnapsack(A, Ti, D, R) . Tasks that fit in the currently opened station for C2

11: RemT ← Ti−FitT . Remaining tasks that will be assigned in the next station for C2

12: TaskSequence.Add(FitT) . at the end, in any topological order

13: NS2 ← NS2 + 1 . Close current C2 station and open new one

14: A← C2 −
∑

t∈RemT Dt . Open next station with appropriate available time

15: TaskSequence.Add(RemT) . at the end, in any topological order

16: end if

17: end for

18: return (NS2, TaskSequence)
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In essence, this post-processing occurs by incrementing the task sequence with tasks

assigned to SALBP’s solution one station at a time. To do so, the number of stations

used for C2 (NS2), and the remaining available time at the currently open station (A)

are tracked. Because C1 < C2, for each station in SALBP’s solution, one of two things

can occur: either the sum of tasks is assigned to the C1 station is inferior to the available

time A, or it is bounded by A + C2. In the former case, the order of this subset of tasks

(Ts) is irrelevant for the C2 solution and tasks are added topologically to the end of the

sequence. In the latter case, tasks are split into those that fit the currently opened station

(FitT) and those that do not (RemT). These sets depend on the line’s task sequence. To

determine one of the best such sequences, the proposed approach solves a Precedence-

Constrained Knapsack Problem (PCKP) in line 10. The parameters for the associated

PCKP instance are: the knapsack capacity (A), the set of items (Ts), their storage cost

and item value (in this case, these are equal and given by D), and the set of precedence

relations between items (R). Because the number of tasks in each station is typically not

large, these knapsack problems tend to remain tractable.

4.1. Illustrative example

Consider an assembly line balancing instance defined by the precedence diagram and

task durations described by Gunther (1983) and illustrated by Figure 1. Let C1 = 50 and

C2 = 70 define the cycle times for high and low outputs scenarios, respectively. Using

SALOME, the optimal SALBP solutions for each cycle time have, respectively, ten and

eight stations.
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Figure 1: Gunther (1983)’s precedence diagram: task indexes (t) and durations (Dt) are presented within
and next to circles, respectively

Figure 2 illustrates the solution obtained by the proposed heuristic for this particular

instance. In this case, the heuristic found a guaranteed optimal answer as the numbers

of stations match the SALBP optimal for both cycle times simultaneously. Its center row

illustrates the task sequence, in which task indexes are labeled. Adjacent to it, stations

or partitions for each cycle time are depicted.
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Figure 2: Optimal solution representation for the illustrative example

5. Computational Experiments

The MILP model presented in Section 3 and the heuristic method described in Sec-

tion 4 were applied to instances generated using precedence diagrams from a well-known

benchmark (Scholl, 1999). All experiments were conducted on a i7-8700 CPU (3.2 GHz,

6 CPUs, 12 threads) with 32GB RAM and a 3600 second time limit, Gurobi 9.0 was

employed to solve the MILP models, and the SALBP solutions employed by the proposed

heuristic were provided by using the SALOME method (Scholl & Becker, 2006). Problem

data and the best solutions found for each instance are made available in the paper’s

supplementary material.

The cycle time values (C1 and C2) were defined based on SALBP benchmark values on

the high, mid, and low ranges. Instances were produced by combining high-mid, mid-low

and high-low values of cycle time for each precedence diagram. Furthermore, they are

ordered by size (measured in number of tasks), grouped in small (less than 50 tasks),

medium (between 50 and 100 tasks) and large instances (more than 100 tasks). Table 1

reports the tested instance parameters, columns C1 and C2 present the two cycle times of

each instance, while columns L1 and L2 present the optimal SALBP number of stations

for each cycle time. The combination of cycle times led to two instances: one considering

the high demand scenario as the most relevant (w1 = 2 and w2 = 1), and the other with

the opposite consideration (w1 = 1 and w2 = 2). Table 1 also reports the results in terms

of the answer obtained by using only the proposed heuristic (UBh), only the MILP model

(UBm) and of using the model warm-started by the heuristic’s solution (UBB). Lastly,

the LB column reports the best lower bound for the instance, as informed by the MILP

models, and the Gap columns inform the integer gap of the upper bound found by the

heuristic and the MILP model ((UB − LB)/UB).

The heuristic is very fast for all instances, requiring at most 10s, including the solution

of the related SALBP-1 instance. Nonetheless, it produced multiple optimal solutions,

and the result is rather close to the best solution, when it did not. The MILP models

are particularly useful for the small instances, which could all be solved to optimality.

However, for the larger ones, it often failed to even reach a feasible solution (indicated by

N/A). Combined, the proposed heuristic and the MILP model are able to reach solutions
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Table 1: Computational experiment’s results

Instance information Results for w1 = 2 and w2 = 1 Results for w1 = 1 and w2 = 2
Name (size) C1 C2 UBh UBm UBb LB Gaph Gapm UBh UBm UBb LB Gaph Gapm

Mitchel
(21)

14 21 22 22 22 22 0% 0% 20 20 20 20 0% 0%
21 35 14 14 14 14 0% 0% 13 12 12 12 7.7% 0%
14 35 20 19 19 19 5% 0% 16 14 14 14 12.5% 0%

Gunther
(35)

44 50 36 34 34 34 5.6% 0% 36 32 32 32 11.1% 0%
50 70 28 28 28 28 0% 0% 26 26 26 26 0% 0%
44 70 32 N/A 32 32 0% 100% 28 28 28 28 0% 0%

Kilbridge
(45)

57 79 28 27 27 27 3.6% 0% 26 24 24 24 7.7% 0%
79 184 18 17 17 17 5.6% 0% 15 13 13 13 13.3% 0%
57 184 24 23 23 23 4.2% 0% 18 16 16 16 11.1% 0%

Hahn
(53)

2004 2806 22 22 22 22 0% 0% 20 20 20 20 0% 0%
2806 4676 16 16 16 16 0% 0% 14 14 14 14 0% 0%
2004 4676 20 20 20 20 0% 0% 16 16 16 16 0% 0%

Tonge
(70)

160 251 62 N/A 62 60 3.2% 100% 55 N/A 55 51 7.3% 100%
251 527 35 N/A 35 35 0% 100% 28 30 28 28 0% 6.7%
160 527 54 N/A 54 53 1.9% 100% 39 N/A 39 37 5.1% 100%

Arcus
(83)

3786 5824 56 N/A 56 56 0% 100% 49 N/A 49 49 0% 100%
5824 10816 36 N/A 36 36 0% 100% 30 N/A 30 30 0% 100%
3786 10816 50 N/A 50 50 0% 100% 37 N/A 37 37 0% 100%

Arcus2
(111)

5755 7916 76 N/A 76 74 2.6% 100% 71 N/A 71 67 5.6% 100%
7916 17067 50 N/A 50 49 2% 100% 40 N/A 40 38 5% 100%
5755 17067 63 N/A 63 63 0% 100% 45 N/A 45 45 0% 100%

Barthold
(148)

403 513 41 40 41 39 4.9% 2.5% 40 38 40 36 10% 5.3%
513 805 30 N/A 29 29 3.3% 100% 27 N/A 25 25 7.4% 100%
403 805 36 36 35 35 2.8% 2.8% 30 N/A 28 28 6.7% 100%

Scholl
(297)

1422 1883 139 N/A 139 137 1.4% 100% 128 N/A 128 124 3.1% 100%
1883 2787 100 N/A 100 99 1% 100% 89 N/A 89 87 2.2% 100%
1422 2787 127 N/A 127 125 1.6% 100% 104 N/A 104 100 3.8% 100%

with low integer gaps even for the large instances (2% on average).

The proposed heuristic tends to perform better for the instances in which the high

demand scenario is considered the most relevant. That occurs because it employs an

optimal SALBP-1’s solution of the lower cycle time to produce the ERALBP’s solution.

This process ensures that the resulting solution will have the optimal number of stations

for that cycle time. However, in many instances, this led to solutions that also have the

optimal number of stations for the higher cycle time, meaning these are optimal regardless

of the relevance weights (w1 and w2) for the scenarios. Consequently, the relevance weights

attributed to each scenario did not affect the best solutions found by the heuristic and

the MILP models. However, one exception occurred: The instance Mitchel (C1 = 21,

C2 = 35) had optimal solutions with 5-4 or 6-3 stations, respectively, depending on the

relevance weights w1 and w2.

5.1. Instance Parameter Influence on large instances

The proposed heuristic is applied to Otto et al. (2013)’s dataset in order to test its

behavior in general for large instances. While the MILP model described in Section 3 is

also tested, it failed to reach solutions for all instances within the time limit. Therefore,

this section reports only the heuristic’s results. Due to the number of instances, the

MILP time limit is set to 1800 seconds for this section’s experiments. Furthermore, the

SALBP initial solutions used by the proposed heuristic in this section were provided by

the Branch, Bound, and Remember method (Sewell & Jacobson, 2012) using a time limit

of 30s.

The proposed method is applied to the 525 large instances, all of which have 100 tasks,

11



but vary regarding the distribution of task durations and the structure of the precedence

graph. In these experiments, the cycle time values of C1 = 1000 and C2 = 1500 are

used. Table 2 reports the average solution Gap for each instance type and for each

relative relevance weight (w1 and w2) as well as the average time required by the heuristic

procedure and the number of optimal solutions found (OPT column) in relation to the

number of tested instances. The Ordering Strength parameter informs how restricted

the precedence diagram is, with higher values meaning more restrictive instances. The

Task Durations parameter informs how these compare to the instances’ original cycle time

(1000 T.U.): these are bimodal (BM), peak in the bottom (PB), and peak in the middle

(PM). Further descriptions of these parameters are given by Otto et al. (2013).

Table 2: Experiment’s results for the Otto et al. (2013)’s dataset

Solution Gap
Instance Parameters w1 = 2 · w2 w1 = w2 2 · w1 = w2 Time (s) OPT

Order Strength
0.2 2.0% 2.9% 3.9% 1.1 83/225
0.6 2.1% 3.0% 4.0% 0.75 86/225
0.9 1.5% 2.4% 3.4% 0.49 27/75

Task Durations
BM 1.3% 2.0% 2.8% 0.33 49/175
PB 0.4% 0.7% 0.9% 0.32 147/175
PM 4.1% 5.8% 7.7% 9.08 0/175

Average 1.9% 2.8% 3.8% 3.25 196/525
Maximum 8.6% 10.1% 12.1% 35.0

Table 2 allows an analysis of the impact of each type of instance parameters for the

proposed method’s performance. A parameter with rather direct impact is the relative

relevance of each cycle time (w1 and w2): when w2 is higher, solution gaps are higher. This

result reflects the fact that the method post-processes a SALBP solution for C1. Table 2

also suggests that Order Strength is a less relevant factor for the method’s performance.

Nonetheless, more restrictive instances (0.9) displayed lower solution gaps, meaning they

tend to be easier, as expected. The task duration parameter appears to have greater

relevance for the algorithm performance: when task times are short relative to cycle

time (PB), instances tend to be easier, as reflected by a less than 1% average solution

gap; the bimodal duration distribution (BM) displayed intermediary behavior, but the

hardest distribution, by far is the “Peak in the Middle” distribution (PM). This outcome

is expected as these distributions are also tied to harder, however less common in practice,

SALBP instances (Otto et al., 2013). The number and percentage of instances for which

the proposed method reached guaranteed optimal solutions (minimum number of stations

for both cycle times) also provides similar insights into instance difficulty, and mimics the

behavior displayed by the Solution Gaps.

6. Industrial Data Case Study

This section reports the results of applying the proposed method to practical data of a

gearbox assembly line, which is also made available in this paper’s supplementary material
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for reproducibility purposes. This line had been one of the subjects of a re-balancing study

(Sikora et al., 2017). It is dedicated to the manufacture of a single product model, and it

contains manual workers as well as two specialized robots. In this line, robots act as single-

purposes stations that must (and can only) perform specific tasks, therefore “splitting”

the line in three segments. Sikora et al. (2017) describe that the line was initially set to

an “as-is” layout of 20 total stations (18 workers and 2 robots) operating at a cycle time

of 1541 time units. This initial layout resulted from a previous adaptation effort caused

by a drop in demand. It also fixed some tasks to specific positions, because of heavy

machinery whose re-locations are considered too costly. After re-balancing, Sikora et al.

(2017) reach a minimum cycle time of 1345 time units in a solution with 17 total stations.

This case study compares that approach to what can occur if the line is designed to

anticipate such demand fluctuations. Two scenarios are considered: a “high demand”

one, in which it is desired that the line operates at maximum throughput capacity, and a

“low demand” which is set as the “as-is” configuration of 1541 time units. Based on the

instance’s task durations (Scholl & Becker, 2006), the line’s lowest possible cycle time is

1200 time units. Using standard literature SALBP-1 methods1, it has been determined

that the optimal number of total stations for these scenarios is 20 for the high demand one,

and 16 for the low demand one. An ERALBP solution has been produced by applying

the proposed heuristic to each line “segment” between the robotic workstations of the

“high-demand” scenarios. The resulting solution can operate at both cycle times at their

optimal number of total stations. The solution is illustrated in Figure 3: each wi box

represents a worker, and R1 and R2 represent the dedicated robots.
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Figure 3: Optimal solution representation for the case study

Compared to the literature’s re-balancing approach, this solution presents two advan-

tages: First, it allows a 10% higher production capacity in the “high-demand” scenario

than what was possible by re-balancing the line. Second, all tasks are assigned to the

same position in the line for both scenarios, allowing straightforward alternations between

throughput capacities. The first advantage can be partly attributed to the fact that the

1In order to model the robots and their specific relationship to the tasks that they must perform, these
tasks had their processing times set to the cycle time of each demand scenario (1541 and 1200 time units)
in order to produce a SALBP-1 instance equivalent to the studied problem. SALOME was employed to
solve the SALBP instances.
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re-balancing approach is more limited in its task-station assignments by the impractical

re-positioning costs of a few tasks, leading to a higher cycle time. The second one high-

lights how the proposed method can meet the challenges of demand fluctuations tied to

predictable patterns (seasonality, future production goals) and unexpected events (such

as pandemics).

7. Discussions and Conclusions

This paper discussed the design and balancing of an assembly line that can efficiently

switch between two output levels. This throughput difference is modeled as two different

cycle times. A mixed-integer linear programming (MILP) model and an efficient heuristic

procedure are presented. The latter consists in post-processing a line balancing solution

for one of the problem’s cycle times. The heuristic is capable of quickly producing good-

quality solutions even for large instances of the problem. Combined with the MILP model,

it reached solutions with an average integer gap of 2% for the large instances, including

some optimal solutions. Tests with a 525-instance dataset confirm the heuristic’s solid

performance for larger problems, finding 196 optimal solutions in total. Furthermore,

these tests show that, similarly to SALBP, the studied problem’s difficulty is affected by

the strength of precedence relations and the distribution of task durations.

For businesses that can handle sudden changes in production rate, this fast switch-

ing between output rates means better benefiting from economic opportunities tied to

increased seasonal effects or unexpected demand spikes. In some sectors, sudden changes

to production rates are not as trivial. Nonetheless, the design of assembly lines that can

handle such output switch represents a relevant economic opportunity: namely designing

lines that are optimized for an initial production rate (cycle time), while also anticipat-

ing a planned higher throughput in the future. This flexibility can reduce costs tied to

re-balancing the line.

A case study with industrial data further illustrates these economic opportunities:

By designing the line in a manner that anticipates demand fluctuations, it is possible to

reach better high-demand performance than what was achieved by previous efforts in re-

balancing the line. Furthermore, the alternation between the two cycle time scenarios is

less costly than the re-balancing alternative, as all tasks maintain their physical positions

in both scenarios.

Further works should extend the proposed formulation to incorporate other problem

features such as mixed-model lines, parallel stations, or treating subsets of tasks as flexible.

Furthermore, other exact methods, such as Combinatorial Benders’ Decomposition and

Branch-and-Bound techniques, can also be applied to the problem.

Appendix A. Generalization for more cycle times

Algorithm 2 presents a generalization of the heuristic method presented in Section 4.

It employs Algorithm 1 iteratively, revising the set of precedence relations after each
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iteration. By assumption, the cycle times are ordered such that Cj < Cj+1, and the

given SALBP solution is optimized for C1. In each iteration, the partition for cycle time

Cj imposes additional partial ordering constraints for the following cycle times: tasks

assigned to one station in that partition have effective precedence over tasks assigned

to subsequent stations. This information is carried over to the following iterations by

adding the new partial ordering requirements to the precedence relations set R, meaning

task sequences in subsequent iterations necessarily retain the partition quality of previous

cycle times.

Algorithm 2 Solution method for multiple cycle times

1: Ts(C1)← set of tasks assigned to sth station . Original SALBP solution

2: for each Cj : j > 1 do . for each cycle time

3: (NSj ,TaskSequence) ← Algorithm 1(Ts(C1),Cj ,D,R)

4: Ts(Cj)← set of tasks assigned to sth for Cj given TaskSequence

5: Rnew ← {(t1, t2)|t1 ∈ Ts(Cj), t2 ∈ Ts+1(Cj)} . New implied precedence relations

6: R← R ∪Rnew . Combine new precedences to original ones

7: end for

8: return (NSJ , TaskSequence) . Number of stations for each Cj and final task sequence
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Makssoud, F., Battäıa, O., Dolgui, A., Mpofu, K., & Olabanji, O. (2015). Re-balancing

problem for assembly lines: new mathematical model and exact solution method. As-

sembly Automation, 35 , 16–21. doi:10.1108/AA-07-2014-061.

17

http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.106182
http://dx.doi.org/https://doi.org/10.1016/j.cie.2019.106182
http://dx.doi.org/10.1016/j.ijpe.2005.02.013
http://dx.doi.org/10.1016/0272-6963(83)90005-0
http://dx.doi.org/10.1016/0272-6963(83)90005-0
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2019.11.323
http://dx.doi.org/10.1016/j.ijid.2020.01.009
http://dx.doi.org/10.1080/00207543.2020.1750727
http://dx.doi.org/10.1287/opre.26.6.1033
http://dx.doi.org/10.1080/00207543.2013.874603
http://dx.doi.org/10.1016/j.cie.2020.106944
http://dx.doi.org/10.1080/00207543.2020.1866224
http://dx.doi.org/10.1108/AA-07-2014-061
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