
Annals of Operations Research accepted manuscript.
DOI: 10.1007/s10479-017-2711-0

Mixed-Model Assembly Lines Balancing with Given
Buffers and Product Sequence

Model, Formulation Comparisons, and Case Study

Thiago Cantos Lopes · Celso Gustavo Stall
Sikora · Adalberto Sato Michels · Leandro
Magatão

This is a post-peer-review, pre-copyedit version of an article published in Annals of Operations
Research. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10479-
017-2711-0

Abstract Asynchronous assembly lines are productive layouts in which products
move sequentially between stations when processing at current station is complete,
and the following station is empty. When these conditions are not verified, down-
stream starvations and upstream blockages can occur. Buffers are often employed
to minimize these problems, which are particularly relevant when the line is shared
between a set of different products models (mixed-model lines). If the sequence
of such models is cyclical, a steady-state production rate is eventually reached.
However, determining (and, therefore, optimizing) such steady-state is challeng-
ing. This led to the development of indirect performance measures for mixed-model
lines by many authors. In this paper, a direct performance measure is presented
with a mixed-integer linear programming (MILP) model and compared to previ-
ous formulations. The model is also applied to a practical case study and to a
new dataset (with 1050 instances), allowing general assertions on the problem.
All instances are solved with a universal solver and solutions are validated with
a simulation software. Tests on the dataset instances confirmed the observations
made on the case study: the proposed formulation produced solutions with higher
production rate in 82% of the instances and tied the remaining ones, not being
outperformed a single time. A triple interdependency of task balancing, product
sequencing, and buffer allocation is demonstrated. Cyclical schedules show how
buffers are able to compensate differences between models across stations and lead
to the conclusion that the propagation of differences of models between stations
can generate scheduling bottlenecks (blockages and starvation).

The authors would like to thank the financial support from Fundação Araucária - Agreements
141/2015, 06/2016 and 041/2017 FA-UTFPR-RENAULT, and CNPq (grant 406507/2016-3)

L. Magatão
Federal University of Technology - Paraná (UTFPR)
Graduate Program in Electrical and Computer Engineering (CPGEI)
Av. Sete de Setembro, 3165, Curitiba-PR, Brazil, 80230-901
Tel.: +55-41-3310-4701
E-mail: magatao@utfpr.edu.br

2 Thiago Cantos Lopes et al.

Keywords Mixed-Model Assembly Line Balancing · Cyclical Steady-State
Optimization · Buffers · Asynchronous Lines · Performance Measures

1 Introduction

Assembly lines are product oriented layouts, in which products (or pieces) move
through the workstations on the line in a sequential manner. In each workstation,
a set of tasks is performed before the next workstation’s tasks are allowed to begin.
An important decision problem related to managing such lines is to balance the
distribution of tasks amongst stations (Scholl and Becker, 2006). Common goals
for this problem include minimizing the number of workstations required for a
given production rate (Type-1) and maximizing the production rate for a given
number of workstations (Type-2). This paper will focus on a Type-2 variant of such
problems in which a cyclical product sequence and a set of finite buffers are given
as parameters. This paper is an extended version of the work presented by Lopes
et al (2016) to which the authors have added comparisons to further literature
formulations and performance measures for mixed-model assembly lines, as well
as a more general study on a new dataset.

Assembly lines are often not dedicated exclusively to a single product, but
rather shared by a set of products (Scholl, 1999). A common example is found
in assembly lines of automotive factories with different vehicle models. Lines with
more than one product model can be further classified as in two different types
(Boysen et al, 2008): if set-up times between models are significant and must be
taken into account, significant size batches of each product go through the line
in an alternated fashion, and the problem is called a multi-model assembly line;
If those set-up times are small and negligible, models flow through the line in a
more mixed fashion, such line is called a mixed-model assembly line. This work
will focus on the later type.

Authors approach mixed-model balancing differently (Becker and Scholl, 2006):
some (Thomopoulos, 1970; Merengo et al, 1999) state that it is important to min-
imize differences between model processing times across stations (station smooth-
ing, horizontal balancing), others (Merengo et al, 1999; Matanachai and Yano,
2001; Pastor et al, 2002) state that it is best to equalize average workloads between
stations allowing more differences between models (vertical balancing). Bukchin
(1998) presents comparisons between several performance measures for mixed-
model balancing. These formulations are indirect goals, and were developed be-
cause measuring the line throughput directly is a challenge.

Assembly lines can be further classified in terms of the line flow control (Boysen
et al, 2008): paced lines (continuous) have a conveyor belt that moves all pieces
constantly and together; In unpaced synchronous lines, all products move together,
but discretely one station forward when all pieces have completed processing at
their current stations; In unpaced asynchronous lines, pieces move discretely and
almost independently: each piece can move when processing is completed at its
current station and the next station is available. This work will focus on the later
type of line control, which offers interesting possibilities and challenges linked to
the unpaced flow of pieces in and out of stations and buffers: On the one hand,
products might be blocked (when they are done processing, but the next station is
occupied) and stations starved (when a piece leaves the station and the previous

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 3

station has not completed processing). On the other hand, the independent flow
of pieces can help compensate the differences between models processing times.

Blockages and starvations produce disturbances on the assembly line that must
be taken into account. If the product sequence is cyclical, the system will converge
towards steady-state. However, such state is not trivially determinable due to the
aforementioned disturbances. Furthermore, if the line starts empty, transient-stage
disturbances further complicate such determination. Figures 1 and 2 compare the
steady-state cyclical behavior to the transient behavior on a two-model (flowing
through the line on a 5-1 pattern) assembly line with seven stations and single
unitary buffers between them1. Notice that the replications of the piece set be-
have (six pieces, five of model 1 and one of model 2) identically in Figure 1, and
differently in Figure 2: The behavior is stable on the cyclical schedule and unstable
on the transient one, in particular on the first station and buffer: idle times occur
at the first station due to downstream blockages, which are mainly originated at
the second and third workstations.

The optimization of a cyclical mixed-model flow-shop consists in combining
traditional simpler problems, namely line balancing (first studied by Salveson
(1955)), model sequencing (first modeled by Bard et al (1992)), and buffers al-
location (first studied by Koenigsberg (1959)). It has been repeatedly stated that,
if possible, it is best to attempt to deal with these aspects simultaneously (Sawik,
2000; Boysen et al, 2008, 2009b) in order to achieve better final results. Never-
theless, these problems are often dealt with independently as some reviews for
mainly balancing (Battäıa and Dolgui, 2013), sequencing (Boysen et al, 2009b),
buffer allocation (Demir et al, 2014), and cyclical scheduling (Levner et al, 2010)
suggest. Most authors focus separately on variations of each of this problem’s as-
pects. Some examples: Scholl et al (2009); Gurevsky et al (2012); Kellegöz (2016)
present variations of balancing problems, Leu et al (1997); Heath et al (2013);
Golle et al (2015) present variations of sequencing problems, and Karabati and
Kouvelis (1994); Spinellis and Papadopoulos (2000); Gurgur (2013) present vari-
ations of buffer allocation problems. Karabati and Kouvelis (1994), in particular,
reinforced the previously mentioned interconnection between these problems by
showing that buffer allocation based exclusively on sequence-independent infor-
mation often leads to suboptimal results.

Nonetheless, some authors combine these problems, mostly two at a time, ei-
ther using decomposition strategies or (meta)heuristic procedures (Battini et al,
2009; Özcan et al, 2010; Tiacci, 2015). In general, however, most balancing models
leave buffers and product sequences out of the picture, whereas in most sequencing
models as well as in most cyclical flow-shop models, processing times are consid-
ered parameters. There are, however, some noteworthy exceptions: Sawik (2004)
presents a formulation for balancing and scheduling pieces in an assembly sys-
tem in which stations are not necessarily serial. Öztürk et al (2013) presented a
model for mixed-model assembly lines that linked balancing and sequencing, on
(possibly buffered) asynchronous lines with a makespan minimization goal, but
did not take the cyclical aspect into account. Sawik (2012) presents formulations
that compare makespan results of different scheduling strategies. Öztürk et al
(2015) seek to optimize steady-state results, but also use a makespan minimiza-

1 The schedules illustrated by Figures 1 and 2 are generated by the optimization procedures
discussed at Section 3.2.2.

4 Thiago Cantos Lopes et al.

0 500 1000 1500 2000 2500 3000

Station 1

Buffer 1

Station 2

Buffer 2

Station 3

Buffer 3

Station 4

Buffer 4

Station 5

Buffer 5

Station 6

Buffer 6

Station 7

Time Units

Cyclic Balancing Schedule

Model 1
Model 2

Fig. 1: Cyclical schedule representing steady-state: Darker colors represent process-
ing times and lighter colors represent waiting times. Buffer and station behavior
are identical in both replications. Source: Lopes et al (2016).

tion goal for a series of replications of the minimal part set (MPS). The minimal
part set is defined as the smallest set of pieces that can be repeated indefinitely
to reach a production target: if one needs to produce 5000 units of product A
and 1000 units of product B, the MPS is five units of product A and one unit of
product B. These makespan minimization approaches (Sawik, 2012; Öztürk et al,
2015) only represent the transient-state for the first n cycles and are not guar-
anteed to properly predict the steady-state behavior due to the aforementioned
disturbances (blockages, starvations, and empty line start). The other previously
mentioned approaches (station smoothing, horizontal balancing, and vertical bal-
ancing) are indirect performance measures, and are not guaranteed to optimize
cyclical steady-state either.

Thus far, mixed-model balancing models still fail to properly represent steady-
state. There are many different approaches which argue their specific (and differ-
ent) goal functions will also lead to efficiency maximization. This might not always
be the case in a flow shop cyclical schedule, either due to aforementioned transient
effects (as the line starting “empty”), or due to inherent disturbances associated
with asynchronous lines (blockages and starvations). Moreover, a deeper inves-
tigation of single unitary buffer might offer interesting insights on steady-state
behavior and convergence, as suggested by Figure 2.

In this paper, goal function formulations applied on mixed-model assembly
line models and previously described in the literature are discussed and compared
to the authors’ proposed cyclical steady-state formulation (Lopes et al, 2016).
Buffer allocation and a cyclical product sequence are given as parameters, and
the goal is to optimize the cyclical steady-state taking such aspects into account.
Tests reported herein provide evidences that these features should be considered

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 5

0 500 1000 1500 2000 2500 3000

Station 1

Buffer 1

Station 2

Buffer 2

Station 3

Buffer 3

Station 4

Buffer 4

Station 5

Buffer 5

Station 6

Buffer 6

Station 7

Time Units

Transient Balancing Schedule

Model 1
Model 2

Fig. 2: Transient schedule representing initial state: Darker colors represent pro-
cessing times and lighter colors represent waiting times. Buffer and station behav-
ior are different in each replication. Source: Lopes et al (2016).

simultaneously. The problem at hand is a buffer-and-cyclical-product-sequence-
aware mixed-model assembly line balancing problem. The presented model can
be iteratively used to compare different options of layouts and cyclical sequences
(some variations are tested in the case study). The model developed by the authors
is presented and a case study tests such model with data from a real-world assembly
line located on the outskirts of Curitiba-PR (Brazil). Section 2 presents the base
formulation from Lopes et al (2016), along with the extensions required to compare
it to previous performance measures. Section 3 presents the results of applying
both the proposed formulation and different goal functions to the case study’s
data, insights drawn from such tests are discussed. Furthermore, a new dataset is
presented and tested to verify the generality of such insights. Section 4 summarizes
the main conclusions drawn from this paper, and provides directions for further
works.

2 Mathematical Model

In order to describe the buffer-and-cyclical-product-sequence-aware problem, a
mathematical model developed with mixed-integer programming is employed. The
proposed model is based on the following assumptions:

1. Tasks are indivisible and performed on the same stations for all product models.
2. There are precedence relations between some tasks, reflecting technological

constraints.
3. Some of them might be restricted to a subset of stations, reflecting practical

constraints (i.e. the problem is assignment bounded).

6 Thiago Cantos Lopes et al.

4. The product sequence and buffer layout are given, and the product sequence
cycles indefinitely.

5. Transportation times between stations are small and can be ignored.
6. Products flow asynchronously and sequentially in the line between stations.
7. The goal is to balance the line in a way that maximizes its efficiency, minimizing

the average steady-state cycle time.

The following sections describe the parameters, variables and constraints of
the model developed based on these assumptions.

2.1 Parameters, Sets and Variables

The developed mathematical model is a variation of mixed-model assembly
line balancing models (Scholl, 1999). Therefore, it contains a set of basic elements,
such as tasks, precedence relations, stations, and models (product’s type). The
mathematical model uses as parameter the product sequence of the |P | pieces in
the global set (batch). In other words, there is a fixed sequence of products that
repeats cyclically.

Table 1: Nomenclature: Parameters, sets and variables. The domains D on which
each set is defined are also presented.

Parameter Sets[D] Element Meaning

S s Station s, ranging from 1 to |S| (number of stations).

Sb sb Buffer set, S ⊃ Sb, lists all buffers sb
P p Piece p, ranging from 1 no |P | (number of pieces).

T t Task t, ranging from 1 to |T | (number of tasks).

M m Model m, ranging from 1 to |M | (number of models).

n[M] nm Number of pieces of each model,
∑

m nm = |P |.
m[P] m[p] Model m of the p-th piece in the sequence.

d[T,M] d[t, m] Duration (time units, T.U.) of each task t for each model m.

TT (t1, t2)
Set for precedence relations between tasks,

each pair (t1, t2) defines a precedence relation.

F (t, s)
Indicates that the task t can be assigned to the station s,

if s is a buffer then no task can be assigned to it.

Variable Sets[D] Type Meaning

TS[F] Binary 1 if task t is assigned to station s, 0 otherwise

T in[P,S] Real+ Time (T.U.) at which the p-th piece enters the station s

Tx[P,S] Real+ Processing time (T.U.) for the p-th piece in the station s

Tout[P,S] Real+ Time (T.U.) at which the p-th piece leaves the station s

CTPX Real+ Steady-state cycle time, according to the proposed formulation.

px[M,S] Real+ Processing time of model m at the station s

Px[S] Real+ Weighted average processing time at the station s

TAx[M] Real+ Theoretical average processing time of the model m

Some practical constraints mean that not every task t can be assigned at every
station s. In order to describe these constraints, the set F is employed: F lists

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 7

all tuples (t, s) that represent feasible task-station allocations. Each such tuple
indicates that the task t can be assigned to the station s. The set F serves two
purposes: First, it allows buffers to be represented as stations to which no task
can be assigned to. Second, it allows practical features to be incorporated into
the model (e.g., some tasks were fixed to stations due to heavy equipment that
could not be moved). Table 1 lists all the names and interpretations of parameters,
variables, and sets employed in the model.

2.2 Constraints

The developed mathematical model uses a balancing core to control process-
ing times for pieces in stations. The balancing core of the model follows a stan-
dard multi-model set up with assignment bounded occurrence and precedence
constraints defined for the TS variable set, the feasible (t, s) tuples on F , and the
precedence (t1, t2) tuples on TT . Equation 1 establishes the assignment bounded
occurrence constraint, while Inequality 2 models the precedence relations. Notice
that F must be defined in a way that if a particular station sb is a buffer, then
no task can be assigned to it. In other words, the set F contains no tuple (t, sb)
with buffer stations sb ∈ Sb.∑

(t, s) ∈ F

TS[t, s] = 1 ∀ t ∈ T (1)

∑
(t1, s) ∈ F

s · TS[t1, s] ≤
∑

(t2, s) ∈ F

s · TS[t2, s] ∀ (t1, t2) ∈ TT (2)

The balancing core variables are also employed to determine the processing
time Tx[p, s] of each piece p in each station s. This is done by combining the
information of the piece p’s model mp with that of the duration parameters d[t, m]

in time units of each task t for each model m. Equation 3 ties the piece-station
processing times with the model’s balancing core.

Tx[p, s] =
∑

(t, s) ∈ F

d[t, m[p]] · TS[t, s] ∀ p ∈ P, s ∈ S (3)

The processing time is then employed to bind together the model’s last two
variable sets, namely T in[p, s] and Tout[p, s]. These variables carry the time at
which each piece p enters (T in) and leaves (Tout) the station s. There are three
logical constraints required to properly tie these variable sets. First, a piece can
only leave a station after it’s been processed (stated by Inequality 4).

Tout[p, s] ≥ T in[p, s] + Tx[p, s] ∀ p ∈ P, s ∈ S (4)

Second, when a piece leaves one station it enters the next one, as stated by
Inequality 5. Notice that this constraint can be easily adapted to include movement
times between stations, if such times are deemed relevant.

T in[p, s] = Tout[p, s−1] ∀ p ∈ P, s ∈ S, s > 1 (5)

8 Thiago Cantos Lopes et al.

Third, a piece may only enter one station after the previous piece has left
said station as stated by Inequality 6. This constraint prevents two pieces from
simultaneously occupying the same station.

T in[p, s] ≥ Tout[p−1, s] ∀ p ∈ P, s ∈ S, p > 1 (6)

Notice that, while the first and second time constraints tie each pth piece’s
variables to its other variables, the third one tie each pth piece’s variables to its
predecessor, the (p−1)th piece. In order to make a model that represents a steady-
state operation, it is necessary to also tie the last piece (|P |) to the first one (1).

The proposed measure of steady-state mean cycle time CTPX ties the first and
last piece together as the gap between them is linked to the flow shop’s average
production rate. This cycle time is bounded by throughput time for each station
s, as stated by Inequality 7. This bound is the adapted version of Inequality 6: it
ties the end of one set of products to the beginning of the following set: just as
the piece p is tied to the previous piece p − 1, the piece 1 ties to the last piece
(of a “previous” set) |P |, taking into account the shop’s average steady-state cycle
time: CTPX .

|P | · CTPX + T in[1, s] ≥ Tout[|P |, s] ∀ s ∈ S (7)

This station-wise bound for steady-state cycle time is scheduling aware, because
it takes into account scheduling variables. Ignoring such variables, it is possible
to imagine stations operating at a theoretical maximum efficiency (never waiting
for a piece to enter or leave it) as a bound to steady-state behavior. Under this
consideration, each station can be seen as a potential bottleneck that bounds
the maximum average steady-state cycle time. Another way of saying it is: Even
though the average processing time does not define the steady-state cycle time, it
does inferiorly bound it (in a scheduling unaware manner). This bound is stated
by Inequality 8.

|P | · CTPX ≥
∑

(t, s) ∈ F, p ∈ P

d[t, mp] · TS[t, s] ∀ s ∈ S (8)

As this bound for cycle time does not take scheduling variables into account, it
can be referred to as “LB-CT”. Being unaware of product sequences and buffers,
this lower bound merely defines an inferior limit to steady-state, rather than being
the key to steady-state behavior.

Lastly, an initialization constraint can be added for the first piece at the first
station: the entry time of the first piece in the first station is set to zero, as stated
by Equation 9.

T in[1, 1] = 0 (9)

2.3 Objective Function

As stated by Tiacci (2015), realistic line features (such as mixed-models) make
throughput difficult to estimate directly. This leads to multiple authors employing
an indirect performance measure (Thomopoulos, 1970; Bukchin, 1998). However,
the problem’s true goal is to maximize productivity (throughput), or equivalently,
to minimize the average steady-state cycle time. In this paper, a measure of such

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 9

cycle time is proposed (CTPX), and the herein-above formulation seeks to mini-
mize it, as stated by Expression 10.

Minimize CTPX (10)

The assumption here is that the number of pieces to be processed is large
and the only relevant goal is to optimize the steady-state behavior. The proposed
measure for that behavior is given by Inequality 7. Previously described indirect
performance measures proposed by other authors are presented in Section 2.4,
their results are discussed in Section 3.2. A more detailed comparison with the
makespan minimization goal (Sawik, 2012; Öztürk et al, 2015) is discussed on
Section 3.2.2.

In these following sections, the proposed formulation, described by Expres-
sions 1 to 10, is referred to as PX, the realized value of steady state cycle time as
CT , and the proposed measure CTPX . These notation differences are needed, as
an actual comparison between CT and CTPX is only discussed in Section 3.1.2.

2.4 Alternative Goal Functions and Performance Measures

As discussed in Section 1, different authors have employed different goal func-
tions when approaching mixed-model balancing. Two variables are defined in terms
of the balancing decision variable: The processing time of each model m at each
station s can be determined by adding the task times of the tasks performed on
it, as stated by Equation 11.

px[m,s] =
∑

(t, s) ∈ F

d[t, m] · TS[t, s] ∀ m ∈ M, s ∈ S (11)

Second, the weighted average processing time can be determined by taking into
account the demand ratio of each model, as stated by Equation 12.

Pxs =
∑

m ∈ M

nm

|P | · px[m,s] ∀ s ∈ S (12)

Last, a parameter TAxm is defined for each model m. It states the theoretical
minimum average processing of each model. Such value is calculated in accordance
to Equation 13.

TAxm =
∑

t ∈ T

d[t,m]

|S| ∀ m ∈ M (13)

The first objective to be compared to the proposed formulation is the “Station
Smoothing” measure. This objective was proposed by Thomopoulos (1970) and
stated by Equation 14. The goal is to minimize the fluctuation of processing times
at stations. This goal function will be referred to as SX.

Minimize SX =
∑

m ∈ M

nm ·
∑

s ∈ S\Sb

|TAxm − pxm,s| (14)

The second objective is often called “Vertical Balancing” (hereafter referred
to as V X) as proposed by Merengo et al (1999) and stated by Equation 15. The

10 Thiago Cantos Lopes et al.

idea behind this goal is to establish more balanced total workloads across sta-
tions, allowing more differences between models. This goal function minimizes the
differences between the weighted average processing times.

Minimize V X =
∑

s ∈ S\Sb

(
max

k ∈ S\Sb

Pxk − Pxs
)

(15)

Vertical Balancing (Equation 15) argues that the main relevant aspect of
mixed-model balancing is the weighted average processing times at stations. Its
rationale is: “If the average processing times are similar across stations, no work-
station will behave as an important bottleneck”. Vertical balancing does not take
the differences between models within a station directly into account.

The third objective is commonly called “Horizontal Balancing” (hereafter re-
ferred to as HX). The idea behind this goal is to establish more balanced work-
loads across models, allowing more differences between stations. This goal function
minimizes the differences between processing times of each model and the largest
processing time in each station. The formulation presented by Equation 16 was
proposed by Merengo et al (1999).

Minimize HX =
∑

s ∈ S\Sb

∑
m∈M (maxk∈M px[k,s] − px[m,s]) · nm

|P | ·maxm∈M px[m,s]
(16)

Horizontal Balancing (Equation 16) argues that the main relevant aspect is how
model’s processing times differ in each workstation. Its rationale is: “If models all
have similar processing times at each station, product sequence matters less and
productivity is less dependent on it”. Horizontal balancing does not take weighted
average processing times directly into account.

One should note that there are other many variants of horizontal balancing
and vertical balancing proposed by other authors (Matanachai and Yano, 2001;
Pastor et al, 2002). They are, however, similar in nature to the presented ones.

The fourth alternative goal function considered is the makespan minimization
variant discussed in Section 3.2.2, proposed by Sawik (2012); Öztürk et al (2015).
This approach consists on taking two replications of the MPS into account and
minimizing the completion of the last piece, as stated by Equation 17. To the
best of the authors’ knowledge, prior to this work, this was the most sophisticated
balancing goal that uses scheduling information.

Minimize MX = Tout[|P |,|S|] (17)

A last performance measure is hereafter indicated, a probabilistic estimate first
presented by Dar-El et al (1999). It consists on computing the probability of each
model being the bottleneck at each station and multiplying this probability by the
processing time of said model at said station. First, the variable β compares each
model at each station, as stated by Equation 18.

β[m1,s1,m2,s2] =

{
1 if px[m1,s1] > px[m2,s2]

0 otherwise
(18)

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 11

Next, the probability of each model m1 at station s1 having a higher load
than station s2 is computed. Let that probability be stated by prob1m1,s1,s2 , as
presented by Equation 19.

prob1m1,s1,s2 =
∑

m2 ∈ M

nm2 · β[m1, s1,m2, s2]

|P | (19)

The product of these probabilities in every station represents the probability
of model m being the line’s bottleneck at station s. That probability (prob2[m,s])
is stated by Equation 20.

prob2[m,s] =
∏

sk∈S,sk 6=s

prob1[m,s,sk] (20)

At any given time, the probability of a model being in a station can be esti-
mated by its occupation rate. This allows one to finally define the probabilistically
expected cycle time (P.E.) as stated by Equation 21. Notice that this formulation
assumes that processing times at stations are the root source of bottlenecks. This
is further discussed in Section 3.

P.E. =
∑
s∈S

∑
m∈M

nm

|P | · prob2[m,s] · px[m,s] (21)

This probabilistic estimate assumes a random sequence of products (Dar-El
et al, 1999), in the problem at hand, the product sequence is known a priori. Fur-
thermore, the non-linearity present at Equation 20 makes it difficult to incorporate
this formulation to the main MILP model presented in Section 2.2. Therefore, the
P.E. measure will only be compared to the experienced steady-state results of each
formulation.

3 Results and Discussions

The proposed model is applied to a data from an automobile seat assembly line
on the outskirts of Curitiba-PR (Brazil), extending the case studies presented by
Lopes et al (2016). The problem has seven workstations and two product models
with relative demands of approximately five to one. The most common model is
simpler and its tasks required, in average, less time. Some tasks are fixed, reducing
the problem’s degrees of freedom (such fixed tasks are controlled by the F set).
Problem data (task processing times, precedence relations, and task-assignment
possibilities), along with solution tuples generated by the proposed formulation,
is available at the Supporting Information for reproducibility purposes.

3.1 Case Study Description

The case study is centered on a car seat assembly line that produced two prod-
uct models: a simpler one and a more complex one with higher processing times in
average. Demand rates are stable in a rate of 5 units of the simpler product model
to 1 unit of the more complex one. Due to internal reasons of the factory, such
as a relatively constant internal demand for both products, the cyclical product

12 Thiago Cantos Lopes et al.

sequences could be set in one of two configurations: Either the more complex prod-
uct type is produced every six pieces (on a 5-1 pattern), or a batch of five units is
produced every thirty pieces (on a 25-5 pattern). Intermediary configurations are
regarded as confusing due to the loss of regularity and larger batches are deemed
unpractical due to internal demands of the factory. The company also wanted to
evaluate the impact of buffers: initially, the line did not have any internal storage.
Company specialists suspected that a buffer between the second and third work-
stations would be very useful, but wanted to compare that it to installing buffers
between every two stations.

The case study aimed at establishing the best steady-state results as
for given product sequences and buffer layouts. By comparing multiple sce-
narios, one can verify the influence of sequencing and buffer allocation on solution
quality. Two different product sequences with the same demand rate are consid-
ered: The first one (S1) is a “Mixed-Model” sequence, in that products alternate
more frequently and, therefore, product interfaces are more relevant. The second
one (S2) is a “Multi-Model” sequence, in that products alternate less often and in-
terfaces are less relevant. Notice that despite the label “Multi-Model”, set-up times
between models are assumed to be negligible in both cases. Figure 3 illustrates the
two cyclical sequences that are tested.

Multi
Model
25-5

Mixed
 Model

5-1

Fig. 3: “Mixed-Model” (S1) and “Multi-Model” (S2) sequences.

Three different buffer layouts are considered to test the influence of internal
storage: The first one (L1) is a layout with no buffers between stations; The second
one (L2), an intermediary layout with only one single buffer between the second
and third stations; The last one (L3), a fully buffered line with one buffer between
each station pair. The buffer layouts are illustrated by Figure 4. Notice that all
buffers are single unitary buffers: each can only hold one piece at a time.

The combination of the two sequences (S1, S2) with the three layouts (L1, L2,
L3) generate six scenarios, one for each layout under each product sequence (e.g.
S1L1, S2L1, S1L2, ...).

3.1.1 Case Study Results

For each of the generated scenarios, the MILP model described in Section 2 is
employed to generate a balancing solution that optimizes the steady-state. The op-
timal balancing solution generated for each scenario is applied to all other scenarios

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 13

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

Layout 3

Layout 2

Layout 1 Workstation

Buffer

Fig. 4: Buffer layouts: L1, L2, and L3.

in order to verify how well solutions perform in configurations different than those
they are designed to optimize. This gave rise to for a total of thirty-six cases. These
are converted to model instances and solved to optimality using a universal solver
(IBM ILOG CPLEX, available at www.ibm.com). Table 2 presents the realized
values of steady-state cycle time for each one of the 36 combinations. Boldfaced
values refer to steady-state behavior of each scenario with the optimal balancing
obtained for that scenario. Numbers discussed in the text are highlighted in italic
fonts.

Notice that for every scenario (line i) in Table 2, the best answer is the one
obtained by the balancing designed to optimize it (column i). However, balancing
solutions (column j) can behave both better and worse in scenarios other than
the ones they are designed to optimize (line j): For instance, when the S1-L2
solution is applied to S1-L3, the realized cycle time (142.68) is better than the one
obtained by applying it to S1-L2 (143.87), but not as good as the one designed
to S1-L3 applied to S1-L3 (133.48). Also, while the solutions with lowest steady-
state cycle time also have low values of LB-CT (Inequality 8), some cases with
low LB-CT have high steady-state cycle times (for instance: S2-L3, with LB-CT of
135.48, applied to S1-L1 realized a stable CT of 168.45). This confirms an expected
behavior: low values of LB-CT are required for low values of steady-state cycle
time, but they are not sufficient.

Table 2: Values of CTPX for every scenario (rows) when the optimal balancing
solutions from every other scenario (columns) is applied to them.

Balancing from Sequence and Layout

Mixed-Model Seq (5-1): S1 Multi-Model Seq (25-5): S2

L1 L2 L3 L1 L2 L3

A
p

p
li
ed

to S1

L1 156.15 166.33 172.20 165.20 163.55 168.45

L2 155.28 143.87 152.52 155.78 155.78 152.35

L3 153.20 142.68 133.48 140.53 140.53 135.48

S2

L1 158.65 159.85 157.48 149.02 149.02 154.62

L2 155.36 155.28 152.87 144.75 144.75 150.09

L3 153.20 151.96 146.14 140.53 140.53 135.48

LB-CT 153.20 142.68 133.48 140.53 140.53 135.48

Solutions designed for buffered layouts tend to behave poorly when applied to
unbuffered layouts: S1-L3 has the best steady-state behavior (133.48), however,
when its balancing is applied to S1-L1, it displays the worst steady-state behavior

14 Thiago Cantos Lopes et al.

(172.20). Furthermore, Table 2 shows that buffer layouts can influence the optimal
sequencing decisions: For L1, the sequence that offers the best steady-state behav-
ior is S2 (149.02), but for L2 and L3, the sequence S1 outperforms S2 (143.87 and
133.48).

Cases S2-L1 and S2-L2, in particular, generated very similar answers: When
applied to all scenarios other than S1-L1 (in which S2-L2 (163.55) outperformed
S2-L1 (165.2)), both generated equal answers. This demonstrates, that for some
scenarios, there might exist multiple optimal balancing answers: two different
balancing solutions provided the same steady-state cycle time for five out of six
scenarios.

Table 3 presents the (model-station) processing times of all six solutions. No-
tice that the best solutions for the fully buffered cases (S1-L3 and S2-L3) display
steady-state cycle times lower than the highest station-wise processing times of
individual models. These cases also have very similar cycle times despite the dif-
ferent cyclical sequences: it may also be unintuitive how five pieces of model M2
(with much higher processing times in some stations than M1) can go through the
line (Sequence S2) with only a minor impact on steady-state cycle time: How can
single buffers compensate those differences? In order to further clarify how this
occurs, steady-state schedules are presented for thirty pieces of both the S1-L3
case (Figure 5) and the S2-L3 case (Figure 6).

Table 3: Processing times for each model, at each station, for each layout and each
cyclical sequence.

Mixed-Model Sequence - S1

Layout 1 Layout 2 Layout 3

Station M1 M2 LB-CT M1 M2 LB-CT M1 M2 LB-CT

1 121.0 231.7 139.45 105.1 187.3 118.80 116.3 218.1 133.27

2 110.5 216.0 128.08 104.6 255.5 129.75 113.6 231.8 133.30

3 121.9 108.0 119.58 136.6 139.5 137.08 134.7 127.0 133.42

4 126.7 120.9 125.73 130.9 141.1 132.60 138.2 109.6 133.43

5 129.2 127.7 128.95 136.9 137.7 137.03 128.6 155.8 133.13

6 139.8 130.6 138.27 135.0 136.9 135.32 122.0 190.9 133.48

7 137.1 233.7 153.20 137.1 170.6 142.68 132.8 135.4 133.23

Multi-Model Sequence - S2

Layout 1 Layout 2 Layout 3

Station M1 M2 LB-CT M1 M2 LB-CT M1 M2 LB-CT

1 123.5 217.5 139.17 123.5 217.5 139.17 117.7 222.9 135.23

2 125.3 216.0 140.42 125.3 216.0 140.42 118.8 216.0 135.00

3 126.3 175.7 134.53 126.3 165.8 132.88 123.7 127.6 124.35

4 127.7 77.3 119.30 127.7 87.2 120.95 126.4 169.6 133.60

5 128.0 144.0 130.67 128.0 144.0 130.67 132.9 141.7 134.37

6 127.8 132.9 128.65 127.8 132.9 128.65 135.7 132.9 135.23

7 127.6 205.2 140.53 127.6 205.2 140.53 131.0 157.9 135.48

Notice that in Figure 5 the buffer utilization changes as the minimal part set
goes through the line. Buffer 1 fills after the first piece is processed at Station 1

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 15

0 1000 2000 3000 4000 5000 6000

Station 1

Buffer 1

Station 2

Buffer 2

Station 3

Buffer 3

Station 4

Buffer 4

Station 5

Buffer 5

Station 6

Buffer 6

Station 7

Optimal Cyclical Schedule (5-1 Sequence)

Model 1

Model 2

Fig. 5: Steady-state schedule for 30 pieces under the “Mixed-Model” cyclical se-
quence. Darker colors represent processing times and lighter colors represent wait-
ing times.

and stays full until the model two piece arrives. The second buffer is used initially
for a small time, but this duration increases as the MPS passes through the line.
Naturally, every time a full MPS passes through the system, the occupation returns
to the initial configuration. This is required for the schedule to be representative
of the steady-state behavior.

Figure 6 further clarifies how buffers reduce blockages and starvations caused
by model differences (as shown by Table 3): buffers also display an evolving
pattern of relative utilization. The main difference to the S1-L3 scenario is how
incremental these changes are: the first five buffers in the S2-L3 case slowly build
up the relative utilization as M1 pieces pass through the line. Buffer 6, however,
displays the opposite behavior: the buffer decreases relative utilization as M1 pieces
are produced and increases it as M2 pieces are produced.

Notice that the third station on the S2-L3 case has significantly longer idle
times than any station in the S1-L3 case. This is expected as its average processing
time (124.35, indicated in Table 3) is much lower than the cycle time (135.48,
indicated in Table 2), one could try to see this as result of bad balancing. However,
the fact that this is an optimal steady-state schedule for this scenario means that
no other balancing can produce less unproductive times. For example, applying
S1-L3 (that has a LB-CT of 133.48, indicated in Table 2) to S2-L3 leads to a
steady-state cycle time of 146.14.

Lastly, by running the presented model, with Inequality 8, but without In-
equality 7, a global value of LB-CT is achieved. This bound is 133.48 time units,
which matched the value of the S1-L3 (Table 3) case. This means that a finite
number of buffers allowed the system to reach the maximum theoretical
productivity.

16 Thiago Cantos Lopes et al.

0 1000 2000 3000 4000 5000 6000

Station 1

Buffer 1

Station 2

Buffer 2

Station 3

Buffer 3

Station 4

Buffer 4

Station 5

Buffer 5

Station 6

Buffer 6

Station 7

Optimal Cyclical Schedule (25-5 Sequence)

Model 1

Model 2

Fig. 6: Steady-state schedule for 30 pieces under the “Multi-Model” cyclical se-
quence. Darker colors represent processing times and lighter colors represent wait-
ing times.

3.1.2 Result Validation via Simulation

The optimal steady-state cycle times predicted by the proposed model are
validated using a simulation software (Simio, available at www.simio.com). The
product sequence and processing times are deterministic and, therefore, the re-
sults are deterministic. As a result, a detailed statistical analysis of the data is
not required, contrary to stochastic cases (Alexander et al, 2010). The predicted
values for average steady-state cycle time matched perfectly with the steady-state
conditions observed in the simulation (i.e. CT = CTPX). Figure 7 shows the con-
vergence behavior of the simulation for the S1-L3 case, reproducible with the input
data shown in Table 3. Notice that model 2 takes three cycles to achieve steady-
state, while model 1 takes only two. Model 1’s initial cycle (138.2) time is not only
higher than its final one (132.8) but also slightly higher than model 2’s final one
(136.9). Figure 7 demonstrates that the time between pieces at the last station
(and, therefore, the cycle time) gradually converges towards steady-state (and,
therefore, towards the steady-state cycle time). The simulation allows the verifica-
tion of an interesting behavior: the initial cycle times of both models (138.2, and
311.1) are higher than the one verified at the steady-state for both models (132.8,
and 136.9).

These simulations confirmed that the difference between the realized cycle time
and the value of LB-CT can be explained by the blockages and starvation distur-
bances, which happen cyclically due to the cyclical product sequence. Naturally,
the simulation model required a warm-up period as the initial emptiness of the
line meant that the first pieces took longer to go through the system, as shown by
Figure 7. Furthermore, as the first pieces passed, buffers are not yet able to com-
pensate differences between models as well as they do in steady-state. This meant
that the first couple of replications of the MPS are not necessarily representative
of the steady-state, and that one cannot always measure model-wise steady-state
cycle time based on the behavior of such early replications. Steady-state behav-

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 17

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
 b

e
tw

e
e

n
 p

ie
ce

s
at

 la
st

 s
ta

ti
o

n

(T
im

e
 U

n
it

s)

Piece Number

Convergence Behavior
Model 1

Model 2

Fig. 7: Convergence behavior (scenario S1-L3) verified via simulation. After the
third replication, steady-state is achieved. Source: Lopes et al (2016).

ior (in this case time between pieces output) can be “better” than transient-state
behavior, despite the naturally expected (and verified) higher time in system of
later pieces. This “empty line effect” is a disturbance associated with the initial
transient-state and is the key to explain the convergence behavior.

3.2 Comparisons to Other Formulations

In order to verify how well the different formulations behave, each goal func-
tion is implemented and their answers tested for steady-state behavior. Tests are
performed for each buffer layout and each cyclical product sequence presented in
the main case study described in Section 3.1. This section is subdivided in three
parts: First, Section 3.2.1 will present and discuss the results obtained by the
scheduling unaware literature formulations. Second, Section 3.2.2 will compare
the proposed formulation to the makespan minimization (scheduling aware) for-
mulation described in the literature. Last, Section 3.2.3 will evaluate how well the
literature described probabilistic estimate of cycle time behaves in regard to
the experienced cycle time of the tested cases.

3.2.1 Scheduling Unaware Formulations

Out of the alternative goal functions presented in Section 2.4, three do not em-
ploy scheduling variables (e.g., T in[p, s] or Tout[p, s]), namely Station Smoothing
(SX), Horizontal Balancing (HX) and Vertical Balancing (V X). The MX goal
function is the subject of Section 3.2.2.

Three composed variants are also tested: First, V X + SX is the goal function
that originates from adding V X to SX. Second, HX+CE employs the same goal
function as HX and the additional constraint stated by Inequality 22, binding the

18 Thiago Cantos Lopes et al.

processing time value of each model at each station to an upper bound value2.
Last, HX + CA is similar to HX + CE but employs the additional constraint
stated by Inequality 23, binding only the weighted average processing time by an
upper bound value3.

px[m,s] ≤ MaxProcT ime ∀ s ∈ S, m ∈ M (22)

Pxs ≤ MaxWProcT ime ∀ s ∈ S (23)

The main difficulty presented by Equation 16 is the non-linearity associated
with the division by the variable px[m,s]. In the case studies, an iterative process
is employed: A trial solution is used, and the values of maxm∈M px[m,s] are set
as parameters for the next execution. Each variable px[m,s] is then limited by
the value of (maxm∈M px[m,s]) multiplied by (1 + k). Where k is a parameter
whose starting value is 0.2 and decreased (by 0.01) over the iterations. This led
to solutions with progressively lower values of HX. Once k = 0 is reached, HX
reached a local minimum value. This procedure is not guaranteed to generate
optimal solutions in regard to HX, but did generate better results (lower values
of HX) than the initial trial solution, justifying its use.

Table 4: Realized cycle times obtained for each goal function, including the pro-
posed formulation (PX).

Seq. Layout SX V X HX SX+V X HX+CE HX+CA MX PX

S1

L1 167.28 172.20 364.47 170.23 171.68 177.62 156.73 156.15

L2 154.70 154.55 364.47 154.70 171.68 158.37 143.87 143.87

L3 145.00 134.57 364.47 141.33 170.27 158.37 138.93 133.48

S2

L1 154.35 159.55 364.47 151.42 179.83 187.48 149.02 149.02

L2 149.95 154.94 364.47 147.01 174.15 182.38 144.75 144.75

L3 146.31 148.41 364.47 142.64 170.27 170.79 136.38 135.48

Table 4 compares the observed steady-state cycle time of each formulation to
those obtained by the proposed formulation and those obtained by the makespan
minimization formulation, for a total of 48 cases. By comparing the base formu-
lations (SX, V X and HX) it is rather clear that horizontal balancing is out-
performed by both the station smoothing and the vertical balancing approaches.
In the buffered cases (Layout 3 in particular), V X reached solutions comparable
to the much more sophisticated scheduling aware formulations (MX and PX):
V X applied to S1-L3 obtained a result (134.57) between PX’s one (133.48) and
MX’s one (138.93).

Table 5 presents the processing times obtained on optimal solutions (or local
minimum in HX’s case). Notice how HX presents an interesting problem: Some
stations have average processing times substantially higher (over five times) than

2 The value 250 time units is employed based on the optimal processing time from answers
obtained by other formulations

3 The value 160 time units is employed based on observed cycle time values of other formu-
lations

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 19

Table 5: Processing times of solutions obtained according to each formulation, for
each model at each station.

Station Smoothing - SX Vertical Balancing - VX Horizontal Balancing - HX

Station M1 M2 LB-CT M1 M2 LB-CT M1 M2 LB-CT

1 126.0 184.6 135.77 119.9 200.4 133.32 95.2 95.2 95.2

2 126.4 238.0 145.00 110.5 247.3 133.3 317.4 599.8 364.47

3 132.1 160.9 136.90 134.2 129.2 133.37 41.9 42.1 41.93

4 123.7 129.2 124.62 138.2 109.6 133.43 29.4 29.3 29.38

5 126.6 146.3 129.88 128.6 155.8 133.13 94.9 94.7 94.87

6 123.8 144.7 127.28 122 190.9 133.48 150.1 149.6 150.02

7 127.6 164.9 133.82 132.8 135.4 133.23 157.3 157.9 157.4

Composed - SX+VX Composed - HX+CE Composed - HX+CA

Station M1 M2 LB-CT M1 M2 LB-CT M1 M2 LB-CT

1 126.0 206.6 139.43 122.1 229 139.92 105.7 102.9 105.23

2 126.4 216.0 141.33 98.8 248.1 123.68 115.2 374.2 158.37

3 132.1 160.9 136.90 83.5 83.6 83.52 83.5 83.6 83.52

4 123.5 128.6 124.35 89.3 89.3 89.3 134.3 136 134.58

5 126.2 153.9 130.82 169.2 169.3 169.22 151.6 152.6 151.77

6 124.4 155.4 129.57 153.1 178.7 157.37 142.8 142.7 142.78

7 127.6 147.2 130.87 170.2 170.6 170.27 153.1 176.6 157.02

others. This is due to the fact that the goal function only measures the differ-
ence between models. HX concentrates processing times differences in a single
station, which is the most loaded one. This is not a coincidence: Analyzing Equa-
tion 16 one can notice that differences between processing times count less if they
occur in loaded stations. This means HX tends to intentionally load a station with
very high processing time in one model and concentrate the differences between
models as much as possible in there: Indeed, aside from that station, processing
times are very similar across models. Vertical balancing (V X) presents solutions
with better potential as the average processing times are lower, but the re-
alization of said potential depends heavily on scheduling, product sequence, and
buffer layout. In scenarios without buffers, V X produced steady-state behaviors
very distant from optimal behavior. Station smoothing (SX) presents model-wise
processing times that are roughly stable across stations, but worse values of
LB-CT than V X. The SX solution realizes better values of cycle times than V X
in four out of six cases. However, in the S1-L3 case, the better processing time
distribution of V X outperforms SX substantially (134.57 versus 145).

In most cases the presented composed variants (SX+V X, HX+CE and HX+
CA) did outperform the base variants. However, the reason for the improvement
in each case ought to be further discussed. The main problem with HX is its
tendency to accumulate high processing time in one station. This means that HX
is less capable of accumulating processing time in one station when combined to
either CE or CA. The V X+SX combination, on the other hand, only outperforms
both SX and V X in the S2 cases. In four cases V X + SX outperforms SX and
in other four it outperforms V X. In that sense, V X + SX seems to combine

20 Thiago Cantos Lopes et al.

the formulations strengths. One should note, however, that this is not enough to
optimize steady-state as both MX and PX produce better steady-state results
(than V X + SX) in all scenarios: this indicates that, in some cases neither low
average processing times nor smoothed processing times across stations are
guaranteed to lead, on their own, to steady-state efficiency.

In all scenarios, the scheduling unaware formulations are dominated by
PX , indicating a weakness of these formulations: Not being able to explicitly take
into account the product sequence and buffers.

3.2.2 Goal Function Comparison and MPS Replications

As discussed in Sections 1 and 2, makespan minimization (Sawik, 2012; Öztürk
et al, 2015) for some MPSs is not necessarily the same as steady-state optimiza-
tion. This is confirmed by Table 4, which shows that for three cases (S1-L1, S1-L3,
and S2-L3) the realized cyclical behavior is worse when applying the makespan
minimization goal (for two MPS replications) than when applying the proposed
formulation. It is expected, however, that as more replications are taken into ac-
count these two goals are likely to converge towards the same results. In order
to test that hypothesis, the scenario with most significant differences between the
results of each formulation (S1-L3) is tested for up to forty MPS replications. The
results are summarized by Table 6.

Table 6 shows the realized values of both steady-state cycle time (CT) and
makespan (MX), when minimizing both PX and MX. For one replication, 1611.7
is the minimal makespan. PX obtains 1752.6, meaning the initial behavior is
better when minimizing MX. However, the realized values of CT when minimizing
makespan are higher than those obtained by the proposed formulation (144.28
versus 133.48), meaning the stable behavior is worse when minimizing MX.

These tests show that the proposed formulation produces better steady-state
results, but longer makespan for the n first replications. However, as the number
n of considered replications is increased, the difference in both makespan and
steady-state behavior between formulations decrease. Notice, however, that the
proposed formulation achieves the best steady-state behavior without
the need to consider multiple replications of the piece set. This confirms
the previously mentioned hypothesis, but does not explain the results on its own:
Why do makespan minimization formulations produce different results for different
numbers of replications?

Figure 1 and Figure 2 in Section 1 offer further insights as they present
the cyclical schedules for optimal answers of the proposed formulation and the
makespan minimization formulation, respectively. As expected, the makespan is
smaller on Figure 2, but the steady-state result is worse (about 3% higher aver-
age cycle time, as presented by Table 6). Notice how the replications of the MPS
do not display the same behavior if the makespan minimization formulation is
employed.

The probable explanation for this behavior difference lies in the transient-state
disturbances, or “empty line effect” (also verified in the simulation model as the
key to the convergence behavior): just as in simulation models, the line is started
“empty”, and this can be exploited by the makespan minimization goal. This gain
might, however, come at a cost for the steady-state behavior: makespan minimiza-
tion generates a dispute between exploiting the “empty line effect” and optimizing

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 21

Table 6: Comparison between makespan and realized steady-state cycle time (CT)
reached for the S1-L3 scenario by the proposed formulation (PX) and makespan
minimization formulation (MX).

Goal: Makespan Minimization (MX) Proposed Formulation (PX)

Values: MX CT CPU Time MX CT CPU Time

No. Rep.

1 1611.7 144.28 5” 1752.6 133.48 6”

2 2445.3 138.93 6” 2596.8 133.48 8”

3 3277.7 137.37 7” 3397.7 133.48 9”

4 4101.1 137.07 9” 4198.6 133.48 9”

5 4923.0 136.62 12” 4999.5 133.48 11”

10 8954.1 133.62 30” 9002.0 133.48 18”

20 16971 133.62 2’54” 17011 133.48 48”

40 33005 133.62 7’23” 33029 133.48 1’20”

how well the pieces flow through the line when such effect does not exist. This is
also concluded by Öztürk et al (2015), who discussed the advantages of consid-
ering multiple product replications. The proposed formulation (PX), however, is
insensitive to the empty line effect, and achieves steady-state optimization with-
out having to subject itself to multiple replications of the piece set.

In industrial practical cases, the number of pieces to be produced might be on
the order of thousands (5000 pieces of model 1, 1000 pieces of model 2). If that is
the case, not only the behavior of the initial pieces is negligible, but it might also
be unpractical to optimize makespan for so many pieces simply due the large size
of the problem, measured in number of variables and constraints: As the number
of replications increased, so did the required CPU time to solve both models (see
Table 6). In that case the best goal is clearly to optimize cyclical behavior, which
can be performed by the proposed model with one MPS replication, regardless
of the total number of pieces to be produced. Notice that, as shown by Table 6,
even with forty MPS replications the makespan minimization formulation does
not reach the optimal steady-state behavior. This reinforces the contribution of
the proposed formulation.

If the number of produced pieces is smaller, one could argue that it’s interesting
to take advantage over the “empty line effect” to reduce the makespan. However,
this effect can often be unreliable: Factories usually continue in one day the work
with pieces from the previous day and, therefore, pieces that are already in the
line make the “empty line effect” (observed in both the simulation model and in
the makespan minimization model) inexistent as the previous day’s pieces tend to
slow down the first replications of the current workpieces. If that is the case, even
for smaller total number of produced pieces it might be best to optimize steady-
state behavior instead of the makespan, even if one could take the total number
of replications into account.

3.2.3 Probabilistic Estimate

This section discusses the probabilistic estimate of cycle time P.E. introduced
by Dar-El et al (1999). The values of P.E. are calculated for each solution of the

22 Thiago Cantos Lopes et al.

proposed method and also of those obtained by the scheduling unaware formula-
tions. Then, P.E. values are compared to the realized cycle time those solutions
offered. Table 2 and Table 4 present the values of six steady-state results for each
of the 12 solutions. Such minimum and maximum values of realized cycle time
are compared to the probabilistic estimate of that each solution in Table 7, which
summarizes results from 72 cases.

Table 7: Best and worst steady-state cycle times for each solution, compared to
the corresponding probabilistic estimate. Boldfaced values are higher than the
estimate.

Solution Min Max P.E. Solution (PX) Min Max P.E.

SX 145.00 167.28 165.60 S1-L1 153.20 158.65 177.44

VX 134.57 172.20 172.50 S1-L2 142.68 166.33 170.20

HX 364.47 364.47 364.47 S1-L3 133.48 172.20 172.07

SX+VX 141.33 170.23 164.77 S2-L1 140.53 165.20 167.00

HX+CE 170.27 179.83 192.37 S2-L2 140.53 163.55 168.67

HX+CA 158.37 187.48 193.21 S2-L3 135.48 168.45 158.20

Notice how, for almost every case, the estimate is conservative: higher than
the realized cycle time. This could lead one to suppose that it can be used as an
upper bound for steady-state solution quality. However, there are problems with
that line argument: First, this estimate is based on random product sequence;
Second, the measure is insensitive to buffers capacity of assisting scheduling and,
therefore, the correspondence between realized cycle time and the probabilistic
estimate is not high. Lastly, in some cases (SX +V X, S1-L1, for instance) the es-
timate is better than the realized result. All these “pathological results” occurred
for the same scenario: S1-L1. In order to clarify why this happened, one of these
“pathological” cases (SX + V X) is compared to a “healthy” one (S1-L1) in, re-
spectively, Figure 8 and Figure 9. Some insights on the reasons why this occurred:
In Figure 8, the bottleneck station is the sixth one, even though the processing
times on both models are not large. The station is a bottleneck due to starvations
that are propagated and generate idle times between pieces, this can be seen as
a scheduling bottleneck: Almost ironically, the sixth station blocks the previous
stations because it is starved by them. In Figure 9, the differences between pro-
cessing times absorb the blockages and prevent them from propagating idle times.
Notice that the replications of the piece set are closer to each other in Figure 9
than in Figure 8: Blockages propagate through stations in Figure 8 and generate
worse steady-state behavior.

This implies on a rather unintuitive conclusion: In some specific cases, differ-
ences between models is a desirable feature. Naturally, the benefit is not the
difference itself, but rather what it allows when scheduling comes into play. This is
naturally easier when buffers are added. Furthermore, Figure 8 offers a clear exam-
ple on how and why a station without high processing times can be the system’s
bottleneck.

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 23

0 500 1000 1500 2000 2500 3000

Station 1

Station 2

Station 3

Station 4

Station 5

Station 6

Station 7

Time Units

Steady-State Behavior (SX+VX)

Model 1

Model 2

Fig. 8: Steady-State schedule for the V X + SX formulation: full schedule repeats
every 1021.4 time units. Darker colors represent processing times and lighter colors
represent waiting times.

0 500 1000 1500 2000 2500 3000

Station 1

Station 2

Station 3

Station 4

Station 5

Station 6

Station 7

Time Units

Steady-State Behavior (S1-L1)

Model 1

Model 2

Fig. 9: Steady-State schedule for the proposed formulation: full schedule repeats
every 940.2 time units. Darker colors represent processing times and lighter colors
represent waiting times.

3.3 Generality Case Study

The results described in Section 3.1.1 and Section 3.2 refer to variations of
a single instance: One set of data vectors describing tasks, models, and demand
rates is tested with two different product sequences and three buffer layouts. It
is necessary to verify whether or not these results hold in general. Furthermore,
task-balancing often occurs before model sequencing (Boysen et al, 2009a) con-
trary to the case study, in which the product sequence is known as a parameter.

24 Thiago Cantos Lopes et al.

Therefore, if the procedure described by Boysen et al (2009a) is adopted, product
sequences will be optimized for a certain balancing solution. This poses the ques-
tion: Can the proposed formulation lead to production rate improvements for a
product sequence that is itself optimized for a previous balancing solution? Given
the relative proximity between the results obtained by the proposed formulation
(PX) and the makespan minimization ones (MX), one can also ask: How do these
sequence-aware formulations behave in other instances?

3.3.1 Data Generation

In order to answer the questions herein above mentioned and to verify the
generality of the results presented in the previous sections, new tests are performed
on a larger dataset. The SALBP instances from the dataset presented by Otto et al
(2013) are used to generate mixed-model ones, as described hereafter: The SALBP
instances are designed for the type-1 variation of the problem, with a cycle time
of 1000 time units. The instances vary in size, task time distributions, precedence
graph structure, and ordering strength. Otto et al (2013) present three types of
task time distributions: peak in the bottom, peak in the middle, and bimodal. The
first two generate instances with a normal distribution of task times centered on
either a low or medium value (relative to 1000 time units). The later generates task
times that are most likely to be small, but have a small probability of being much
larger. This type of task distribution is chosen to generate mixed-model instances
due to the following reason: If the task times of multiple SALBP instances are
converted into task times of different product models, most tasks will have similar
small processing times, and the tasks that have higher processing times will differ
between models. This emulates a rather interesting mixed-model characteristic.

In order to restrict the comparisons to optimal solutions of each formulation,
only the small (all of which had 20 tasks) cases from Otto et al (2013) are used.
No filter is applied to the structure of the precedence diagrams or to its ordering
strength. A total 175 bimodal and small SALBP instances are used. These are
grouped five-by-five sequentially, generating 35 groups of task processing times. For
each group, five task-properties data vectors are generated: one for the precedence
diagram of each of the SALBP instances. For all instances, the demand rates are
presumed to be equal, 20% for each product, with an MPS of (1, 1, 1, 1, 1). This
leads to a total of 175 mixed-model data vectors.

In order to optimize the production rate, the number of stations must be
given. A specific value is chosen (seven workstations), based on the main case
study. Three buffer layouts are considered: Empty, with no buffers; Half, with
single unitary buffers before every even station (3 buffers in total); and Full, with
single unitary buffers between every station (six buffers in total). This leads to a
total of 525 individual buffered mixed-model instances.

The cyclical product sequence could be arbitrarily chosen. But one goal of this
dataset is to verify if the proposed formulation can lead to production rate im-
provements for a product sequence that is itself optimized for a previous balancing
solution. Therefore, for each buffered mixed-model instance two specific cyclical se-
quences are produced: the ones that lead to the best production rates for the SX
and V X formulations. This generates a total of 1050 sequence-aware instances
for the formulations MX and PX. This paper’s Supporting Information provides
additional details about the data generation.

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 25

3.3.2 Generality Study Results

Each of the 525 buffered mixed-model instances is solved for two sequence
unaware goal functions (SX, V X)4, generating an optimal balancing solution ac-
cording to said goal. The best possible cyclical sequence is then defined for the
balancing solution, this can be done rather quickly by comparing the 24 possible
alternatives5. This sequence solution (the best possible one for either SX or V X)
is then used to generate a sequence-aware instance that is solved by both proposed
model (PX) and the makespan minimization model (MX). The cycle time ob-
tained by each formulation (PX, MX, SX, V X) can then be compared to every
other formulation. These results are summarized by Table 8.

Table 8: Ratios between realized values of CT , average obtained values of CT ,
and number of cases in which it reached the theoretical bound LB-CT, for each
formulation and buffer layout.

Buffers SX V X MX PX

Avg. Ratio to PX

Empty 1.047 1.095 1.032 1

Half 1.06 1.069 1.048 1

Full 1.098 1.002 1.066 1

Max. Ratio to PX All Layouts 1.22 1.25 1.18 1

Min. Ratio to PX All Layouts 1 1 1 1

Average CT

Empty 830.16 866.13 817.15 791.97

Half 779.98 785.49 770.85 735.55

Full 759.8 691.86 736.85 691.08

No. CT=LB-CT All Layouts 1 151 11 263

Table 8 presents the average values of cycle time for each formulation (SX,
V X, MX, PX) and the (minimum, average, and maximum) ratios between those
values and the CT value achieved by the proposed formulation (PX). Notice that
the global minimum value for all cases is 1, meaning that the proposed formu-
lation is not outperformed in any instance. These results showed that the other
methods behave differently depending on the buffer layouts: the SX goal leads
to better results than the V X goal in the Empty and Half buffer layouts, but is
outperformed by V X in the Full Buffer layout. In this layout, V X is very close
to PX, with a 0.2% average difference in realized cycle times, meaning that this
is a good alternative when assembly lines have many buffers (e.g. in the Elec-
tronic Industry). However, it generated in average the worst results for the other
layouts. The makespan minimization alternative (MX) generated good results
(second only to PX) for the buffer layouts Empty and Half, but showed a large
difference to the proposed formulation in the Full buffered scenario. This mim-
ics the results obtained on Section 3.2, suggesting that when more buffers are

4 Horizontal balancing HX is not tested due to its poor performance on the practical case
study and to its non-linearities that prevent optimal solutions from being found.

5 In an MPS of five units (1,1,1,1,1), by fixating the first model in the first position, one can
generate 4! combinations of cyclical sequences. Each sequence requires a quick simulation of
a few replications of the MPS going through the line. Alternatively, linear relaxations of the
proposed model can be used.

26 Thiago Cantos Lopes et al.

present there is a stronger dispute between the optimization of steady-state
behavior and transient-state behavior. These results also corroborate the ob-
served interconnections between balancing and buffer allocation. Furthermore, a
comparison between the realized values of cycle time and the minimal theoretical
one (LB-CT) shows that, in 263 cases, a finite number of buffers allows the system
to reach the maximum theoretical productivity.

The Probabilistic Estimate (P.E.) discussed in Section 3.2.3 is also compared to
the realized cycle time of each formulation (SX, V X, MX, PX). The minimum,
average and maximum ratios are presented by Table 9. Notice that the estimate
repeats the conservative overall behavior that had been previously verified: In
average for all methods the estimate is higher than the realized cycle time, and
remains insensitive to buffers capacity of assisting scheduling. For some instances,
however, the P.E. is up to 6% optimistic, repeating the inconsistencies that had
been previously observed in Section 3.2.

Table 9: Minimum, Average and Maximum P.E. Ratios to Realized CT of each
Method and each Buffer Layout

Buffer Empty Half Full All Layouts

Method Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min.

SX 1.16 1.07 0.94 1.23 1.14 1.03 1.38 1.17 1.03 1.38 1.12 0.94

V X 1.24 1.14 0.98 1.39 1.25 1.14 1.63 1.42 1.24 1.63 1.27 0.98

MX 1.31 1.17 1.06 1.42 1.24 1.1 1.52 1.31 1.13 1.52 1.24 1.06

PX 1.4 1.2 1.07 1.48 1.3 1.14 1.65 1.41 1.26 1.65 1.3 1.07

A detailed table with all output information of each of the 1050 individual exe-
cutions (525 for SX, 525 for V X, each followed by MX and PX) is available at the
Supporting Information, along with the data vectors. The results reported above
summarize that information, answering the aforementioned generality questions:
What is observed in the practical case study is verified anew in the combina-
torial instances. In the majority of cases (82%), it is possible to improve the
productivity of the line by using a sequence aware formulation (by in average 5%),
even when that sequence is optimal for a previous balancing solution.
This reinforces the main contribution of this paper: although sequencing is usu-
ally performed after balancing, when a cyclical sequence is known, the presented
balancing formulation (PX) can offer better steady-state production rates.

4 Conclusions

This paper extends a previous work by the authors (Lopes et al, 2016) in
which a model for balancing an asynchronous assembly line with given buffers
and cyclical product sequence is presented. The model is applied to data from a
car seat assembly line on the outskirts of Curitiba-PR (Brazil) in a practical case
study. The proposed formulation accurately predicts steady-state configurations
with only one replication of the product set, and is validated by a simulation
model. The optimized result is aware of the buffer layout and product sequence
(problem’s scenario). Answers obtained with each tested scenario are applied to

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 27

all other scenarios, allowing one to state that a triple interdependency of optimal
solutions exists connecting balancing, sequencing and buffer allocation (Table 2).
Furthermore, comparisons between scenarios (Figure 5 and Figure 6) allowed to
verify that buffers can aid scheduling mixed-model assembly lines whether product
models change often or not: The relative utilization of buffers can slowly increase
or decrease as rather large minimal part sets (up to 30 pieces tested) go through
the line.

The steady-state results achieved by the proposed formulation are compared to
those reached by previous literature described goal functions: station smoothing,
vertical balancing, horizontal balancing, and makespan minimization. Variants of
previous formulations are also tested. The case study has shown that optimizing
a flow-shop with makespan minimization goal for a finite number of replications
is not equivalent to optimizing for steady-state efficiency (Table 6 and Figure 2).
Moreover, the makespan minimization formulation’s answer converges towards the
proposed formulation’s answer as the number of considered replications increases.

A probabilistic estimate of cycle time (Dar-El et al, 1999) is tested, showing
conservative values for most scenarios. In some scenarios, however, the estimate
is optimistic. A closer investigation on the solution provided in such scenarios
suggested (counter-intuitively) that differences between models can be a desirable
feature, by helping to compensate via scheduling other differences between models
on other stations. This case showed that the probabilistic estimate is unable to
take into account scheduling-generated bottlenecks: Stations can propagate the
differences between models and lead to steady-state bottlenecks in stations without
high processing times on the individual models (Figure 8).

A combinatorial study with 1050 individual instances is conducted. The opti-
mal answers of each instance in accordance to each formulation is analyzed, and
compared to the probabilistic estimate. With these additional tests, the results ver-
ified on the practical case study are reinforced: First, balancing, sequencing and
buffer allocation problems are interconnected. Second, makespan minimization of
a finite number of replications does not necessarily optimize steady-state. Third, a
finite number of buffers might allow an assembly line to reach maximum theoreti-
cal efficiency. Last, the proposed formulation generated solutions with steady-state
cycle times in average 5% better than alternative formulations (station smoothing,
vertical balancing and makespan minimization), and it is not outperformed in a
single any instance.

Further works should seek to combine the degrees of freedom in balancing,
sequencing and possibly buffer allocation to this cyclical form, and eventually
take into account transportation times between stations, amongst other often un-
avoidable unproductive times currently left out of the model for simplicity’s sake.
Other problem variations such as U-shaped assembly lines, parallelism, continuous
or synchronous pace might also have modeling opportunities that can be further
explored by combining such degrees of freedom.

References

Alexander DR, Premachandra IM, Kimura T (2010) Transient and asymptotic
behavior of synchronization processes in assembly-like queues. Annals of Oper-
ations Research 181:641–659, DOI 10.1007/s10479-010-0796-9

28 Thiago Cantos Lopes et al.

Bard JF, Dar-elj E, Shtub A (1992) An analytic framework for sequencing mixed
model assembly lines. International Journal of Production Research 30(1):35–48,
DOI 10.1080/00207549208942876

Battäıa O, Dolgui A (2013) A taxonomy of line balancing problems and their
solution approaches. International Journal of Production Economics 142:259–
277, DOI 10.1016/j.ijpe.2012.10.020

Battini D, Faccio M, Persona A, Sgarbossa F (2009) Balancing - sequencing pro-
cedure for a mixed model assembly system in case of finite buffer capacity.
International Journal of Advanced Manufacturing Technology 44:345–359, DOI
10.1007/s00170-008-1823-8

Becker C, Scholl A (2006) A survey on problems and methods in generalized
assembly line balancing. European Journal of Operational Research 168:694–
715, DOI 10.1016/j.ejor.2004.07.023

Boysen N, Fliedner M, Scholl A (2008) Assembly line balancing: Which model to
use when? Intern Journal of Production Economics 111:509–528, DOI 10.1016/
j.ijpe.2007.02.026

Boysen N, Fliedner M, Scholl A (2009a) Production planning of mixed-model
assembly lines: overview and extensions. Production Planning & Control: The
Management of Operations 20(5):455–471, DOI 10.1080/09537280903011626

Boysen N, Fliedner M, Scholl A (2009b) Sequencing mixed-model assembly lines:
Survey, classification and model critique. European Journal of Operational Re-
search 192:349–373, DOI 10.1016/j.ejor.2007.09.013

Bukchin J (1998) A comparative study of performance measures for throughput
of a mixed model assembly line in a JIT environment. International Journal of
Production Research 36(10):2669–2685

Dar-El EM, Herer YT, Masin M (1999) CONWIP-based production lines with
multiple bottlenecks: performance and design implications. IIE Transactions
31:99–111

Demir L, Tunali S, Eliiyi DT (2014) The state of the art on buffer allocation prob-
lem: a comprehensive survey. Journal of Intelligent Manufacturing 25(3):371–
392, DOI 10.1007/s10845-012-0687-9

Golle U, Rothlauf F, Boysen N (2015) Iterative beam search for car sequencing.
Annals of Operations Research 226:239–254, DOI 10.1007/s10479-014-1733-0

Gurevsky E, Battäıa O, Dolgui A (2012) Balancing of simple assembly lines under
variations of task processing times. Annals of Operations Research 201:265–286,
DOI 10.1007/s10479-012-1203-5

Gurgur CZ (2013) Optimal configuration of a decentralized, market-driven pro-
duction/inventory system. Annals of Operations Research 209:139–157, DOI
10.1007/s10479-011-0977-1

Heath SK, Bard JF, Morrice DJ (2013) A GRASP for simultaneously assigning
and sequencing product families on flexible assembly lines. Annals of Operations
Research 203:295–323, DOI 10.1007/s10479-012-1167-5

Karabati S, Kouvelis P (1994) The interface of buffer design and cyclic scheduling
decisions in deterministic flow lines. Annals of Operations Research 50:295–317

Kellegöz T (2016) Assembly line balancing problems with multi-manned stations
: a new mathematical formulation and Gantt based heuristic method. Annals of
Operations Research 253(1):377–404, DOI 10.1007/s10479-016-2156-x

Koenigsberg E (1959) Production Lines and Internal Storage – A Review. Man-
agement Science 5(4):410–433, DOI 10.1287/mnsc.5.4.410

Mixed-Model Assembly Lines Balancing with Given Buffers and Product Sequence 29

Leu Yy, Huang PY, Russell RS (1997) Using beam search techniques for sequencing
mixed-model assembly lines. Annals of Operations Research 70:379–397, DOI
10.1023/A:10189386

Levner E, Kats V, Alcaide D, Pablo LD, Cheng TCE (2010) Complexity of cyclic
scheduling problems: A state-of-the-art survey. Computers & Industrial Engi-
neering 59(2):352–361, DOI 10.1016/j.cie.2010.03.013

Lopes TC, Sikora CGS, Magatão L (2016) Buffer and Cyclical Product Sequence
Aware Assembly Line Balancing Problem: Model and Steady-State Balancing
Case Study. In: Annals of the XLVIII SBPO, Vitória-ES, Brazil, pp 3458–3469

Matanachai S, Yano CA (2001) Balancing mixed-model assembly lines to reduce
work overload. IIE Transactions 33:29–42, DOI 10.1080/07408170108936804

Merengo C, Nava F, Pozzetti A (1999) Balancing and sequencing manual
mixed-model assembly lines. International Journal of Production Research
37(12):2835–2860, DOI 10.1080/002075499190545

Otto A, Otto C, Scholl A (2013) Systematic data generation and test design for
solution algorithms on the example of SALBPGen for assembly line balancing.
European Journal of Operational Research 228(1):33–45, DOI 10.1016/j.ejor.
2012.12.029

Özcan U, Çerçioglu H, Gökçen H, Toklu B (2010) Balancing and sequencing of par-
allel mixed-model assembly lines. International Journal of Production Research
48(17):5089–5113, DOI 10.1080/00207540903055735

Öztürk C, Tunali S, Hnich B, Örnek MA (2013) Cyclic Scheduling of Flexible
Mixed Model Assembly Lines, vol 18. IFAC, DOI 10.3182/20130619-3-RU-3018.
00413

Öztürk C, Tunalı S, Hnich B, Örnek A (2015) Cyclic scheduling of flexible mixed
model assembly lines with parallel stations. Journal of Manufacturing Systems
36:147–158, DOI 10.1016/j.jmsy.2015.05.004

Pastor R, Andrés C, Duran A, Péres M (2002) Tabu search algorithms for an
industrial multi-product and multi-objective assembly line balancing problem,
with reduction of the task dispersion. The Journal of Operational Research
Society 53(12):1317–1323, DOI 10.1057/palgrave.jors.2601457

Salveson ME (1955) The assembly line balancing problem. The Journal of Indus-
trial Engineering 6:18–25

Sawik T (2000) Simultaneous versus sequential loading and scheduling of flexible
assembly systems. International Journal of Production Research 34(14):3267–
3282, DOI 10.1080/002075400418252

Sawik T (2004) Loading and scheduling of a flexible assembly system by mixed
integer programming. European Journal of Operational Research 154:1–19, DOI
10.1016/S0377-2217(02)00795-6

Sawik T (2012) Batch versus cyclic scheduling of flexible flow shops by
mixed-integer programming. International Journal of Production Research
50(18):5017–5034, DOI 10.1080/00207543.2011.627388

Scholl A (1999) Balancing and sequencing assembly lines, 2nd edn. Physica, Hei-
delberg

Scholl A, Becker C (2006) State-of-the-art exact and heuristic solution procedures
for simple assembly line balancing. European Journal of Operational Research
168:666–693, DOI 10.1016/j.ejor.2004.07.022

Scholl A, Boysen N, Fliedner M (2009) Optimally solving the alternative subgraphs
assembly line balancing problem. Annals of Operations Research 172:243–258,

30 Thiago Cantos Lopes et al.

DOI 10.1007/s10479-009-0578-4
Spinellis DD, Papadopoulos CT (2000) A simulated annealing approach for buffer

allocation in reliable production lines. Annals of Operations Research 93:373–
384

Thomopoulos NT (1970) Mixed Model Line Balancing with Smoothed Station
Assignments. Management Science 16(9):593–603

Tiacci L (2015) Simultaneous balancing and buffer allocation decisions for the
design of mixed-model assembly lines with parallel workstations and stochastic
task times. International Journal of Production Economics 162:201–215, DOI
10.1016/j.ijpe.2015.01.022

	Introduction
	Mathematical Model
	Results and Discussions
	Conclusions

