
Balancing a Robotic Spot Welding Manufacturing Line: an
Industrial Case Study

Thiago Cantos Lopesa , Celso Gustavo Stall Sikoraa , Rafael Gobbi Molinab , Daniel Schibelbainc ,
Luiz Carlos de Abreu Rodriguesb , Leandro Magatãoa∗

a: Graduate Program in Electrical and Computer Engineering (CPGEI)

Federal University of Technology - Paraná (UTFPR), Curitiba, Brazil, 80230-901
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Abstract

Balancing robotic welding manufacturing lines is a challenging variation of assembly line problems,

often performed manually and based exclusively on the company’s experience. The combination of

the problem’s characteristics: movements, assignment restrictions, assignment-dependent param-

eters and interference constraints pose significant modeling and practical difficulties. The com-

bination of this problem’s features is rather difficult to properly convert to previously described

models. In this paper, we describe the problem at hand, we present the model developed to solve

it and describe the case studies in a real-world car factory on the outskirts of Curitiba in Brazil.

The model was developed with Mixed Integer Linear Programming (MILP) techniques, validated

with empirical data, and solved with a universal solver. The optimized balancing achieved a cycle

time reduction of up to 6.6% compared to the as-is configurations. The total movement time was

observed not to be necessarily minimized during the optimization process, implying that trade-offs

exist between movement times and the number of welding points performed.

Keywords: Combinatorial Optimization, Assembly Line Balancing Problem, Robotic Welding

Manufacturing Line, Mixed Integer Linear Programming

c© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

DOI: 10.1016/j.ejor.2017.06.001

1. Introduction

During the manufacturing of a vehicle’s body, its different pieces are assembled and welded

together. This process can be performed manually or with robots (or in a hybrid manner). In a

sense, this can be seen as a classic balancing problem: The shop’s cycle time is defined by the most

loaded worker or robot; therefore, efficient balancing seeks to distribute the workload in an even

manner. There are, however, a series of particular features in this problem, such as movements
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and interferences. These features distance the problem from the classical assembly line balancing

variants. In this paper we describe a new model and case study that seeks to optimize robotic

manufacturing lines that perform the spot-welding points in vehicles.

Assembly Line Problems have a wide range of variations. Mostly, they derive from the simpler

version, the Simple Assembly Line Balancing Problem (SALBP). These variations either modify

SALBP’s basic concepts or add new ones entirely. The reviews presented in Becker & Scholl (2006);

Boysen et al. (2009); Battäıa & Dolgui (2013) provide broad classifications ranging from task and

station attributes, line control and layout and model-dependency.

In a robotic welding context, one may try to adapt the problem at hand to fit models already

described in the literature. For instance, some welding points can only be accessed by a subset of

robots: these accessibility issues might be treated with assignment restrictions (Pastor & Coromi-

nas, 2000). Robotic Assembly Line Balancing Problems (Rubinovitz & Bukchin, 1991) usually

attribute different processing times for tasks depending on which station the tasks are performed,

or on which robot is assigned to each station. Sequence-dependence increments (Scholl et al., 2013)

seem to be relevant to describe movements as the duration of one spot welding tends to be small

in comparison to the cycle time (in the case studies, about 20 times shorter). Furthermore when

there are many robots at the same workstation, one could attempt to treat interference constraints

as incompatibility constraints between tasks. However, there are limitations to how closely one can

adapt the many features of this problem to current models, in particular when the characteristics

are considered in a combined fashion.

This paper presents an optimization problem, a novel MILP model and the case study developed

in a large size spot welding robotic line. The paper is structured as follows. Section 2 presents the

studied problem, describes its characteristics and explains the limits other models display when

employed to describe and optimize it. Section 3 describes the developed model from its basic

concepts to its sets, variables and constraints. Section 4 describes the case studies, the problem’s

size, achieved results and discusses some practical insights. Section 5 summarizes the main results

and contributions of this paper.

2. Problem Statement

The studied manufacturing line is composed primarily of welding points. These can be seen

as tasks whose required processing times are similar and short when compared to the cycle time.

In principle, balancing might seem simple: simply divide the number of welding points roughly

evenly between robots. There are, however, a few difficulties: robotic tools must be moved between

welding points and the movement time is not usually known between each pair of points - and it

is not necessarily proportional to euclidean distance between points, either. Such time cannot be

easily determined as optimizing robotic routes is a hard problem on its own. Furthermore, stations

often have more than one robot. Robots in the same station are subject to potential interference

problems if they perform tasks (welding points) at the same regions or cross the robotic arms. In

manual stations, this might not be such a serious concern as workers can communicate, coordinate
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and adapt in real time, but the studied robots blindly follow a predefined set of instructions. The

specific tools and fixed positions of robots impose accessibility constraints, meaning that each robot

will only be able to access and perform a subset of the welding points.

The studied robotic spot-welding balancing problem has, therefore, the following characteristics:

C0 Occurrence Constraint - all welding points must be performed;

C1 Assignment Restrictions - due to accessibility constraints associated with the robot’s tools

and positioning;

C2 Robot-wise dependent parameters - Not all robots are equally fast due to their model and to

the size of their spot welding tools

C3 Movement Time Between Welding Points - Each robot’s cycle time is not determined by

the simple sum of time of each “task”; performed: movement times between points must be

taken into account

C4 Interference Constraints - robots must not collide with each other as they perform tasks;

While the characteristic C0 is simple and a basic part of nearly all assembly line models (Bow-

man, 1960; White, 1961; Thangavelu & Shetty, 1971; Patterson & Albracht, 1975; Scholl, 1999) it

is made slightly more complicated by the characteristic C1, as explained hereafter. Figures 1 and 2

illustrate why the problem is assignment bounded, as each robot can assess only a subset of weld-

ing points, due to geometrical aspects. These assignment constraints can be seen as station-type

restrictions in the classification schemes proposed by Boysen et al. (2007, 2008); Battäıa & Dolgui

(2013). In Figure 1, the robot can reach the welding point without colliding with the vehicle. In

Figure 2, the robot will collide with the vehicle, if it attempts to reach the welding point.

Figure 1: Accessible welding point. Figure 2: Inaccessible welding point.

There are models (Scholl et al., 2010) and algorithms that deal with various assignment restric-

tions (Dar-El & Rubinovitch, 1979; Pastor & Corominas, 2000; Lapierre et al., 2004; Bautista &

Pereira, 2007) and, thus, could be used to deal with C1. C2 is a pretty common part of robotic

balancing problems (first defined by Rubinovitz & Bukchin (1991)). The problem would probably

be treatable by assignment bounded or adapted RALBP algorithms (Kim & Park, 1995; Levetin

et al., 2006; Daoud et al., 2014), if C1 and C2 were the problem’s most challenging characteristics.

But they are not. C3 implies on constraints that make this problem harder to translate into a

SALBP-based model, as it violates a core hypothesis of such models: a station’s (robot’s) time is
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not equal to the sum of the task’s time performed in it. This fact happens because the welding time

is comparable to the movement’s time between points. Figures 3 and 4 show how relatively close

welding points might require absolutely different configurations for the robot: this fact implies that

movements are not only a matter of Euclidean distance.

Figure 3: Robot performing a welding point

in the back of the vehicle, before moving to

a nearby welding point.

Figure 4: Robot performing a weld-

ing point close to the first one (Fig-

ure 3). Notice how the robot’s position

has changed significantly.

There are set-up models (described for instance by Scholl et al. (2013)) and algorithms (Andrés

et al., 2008; Scholl et al., 2008; Martino & Pastor, 2010) that could attempt to describe C3 by

comparing movement times to setup times. But these models and algorithms require a matrix of

known set-up times between tasks. Such data is not available as the time to move between each

pair of welding spots is rather difficult to determine, especially given the large number of welding

points involved. We could attempt to use an approximation for such movement times, but such

times would have to be robot-dependent. The line has robots of different models with different

speeds and tools of different sizes, aka C2. This might not be a promising direction though.

Attempting to adapt the problem at hand to the model described by Scholl et al. (2013), the

number of variables and constraints would tend to be too large: In the studied scenarios, there were

42 robots. Assuming each of the roughly 700 welding points can be accessed by 10% of the robots

(rounding down to 4) and that the points can be followed or preceded by about a third of the other

points (rounding down to 200), the sequence variables (yij and wij , see Scholl et al. (2013) for more

details) would amount to 280.000 binaries and would require nearly half a million constraints to be

properly controlled. Such a MILP problem is almost certain to be computationally un-treatable.

And that is setting aside the fact that the set-up times are robot-dependent. Successfully operating

some simplifications, there are heuristics and algorithms that could, maybe, be able to provide good

answers, were it not for the other characteristics of this problem.

The feature C3 is made even harder by the fact that some welding points can be performed

in different manners, by different accesses for the robotic arms. The manner a welding point is

accessed affects the movement time the robot will take to reach other points. Two points may seem
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really close and there might be a direct route between them but only if they are performed with the

robotic arm positioned in a way that such route is feasible. These characteristics are illustrated by

Figures 5 and 6, where the robot is accessing the same welding point from two different directions:

suppose the robot is to move to a welding point between the doors. Such point is reachable for the

robot in Figure 6 with a simple spin of its tool. The robot in Figure 5, in the other hand, must

first leave the windshield region, then spin while moving inside the front door (without colliding

with the vehicle), and only then it reaches the welding point. A symmetrical situation occurs if the

robot were to move to a welding point in the central lower part of the windshield region: this time

would be easier for the robot in Figure 5 move between the points. This means that a set-up time

approximation to movements between welding points would not only be robot-dependent but also

access-dependent, making the use of a set-up based models and algorithms even more challenging.

Parallels with assembly lines with processing alternatives models (Pinto et al., 1983) can be drawn,

but the nature of the alternatives is, in this case, rather different.

Figure 5: Welding point accessed through

the windshield.

Figure 6: Welding Point accessed through

the front door.

But even if we could overcome this process alternative aspect and treat C0, C1, C2 and C3

using set-up based assignment bounded robotic balancing model, there is C4: Robots must not

collide with one another while performing the welding points. The interference constraints are not

translatable into the constraint types described by Boysen et al. (2007, 2008); Battäıa & Dolgui

(2013). They are not merely a function of the number of welding points in a station. For instance

if one robot performs part of the welding points in the door while the other performs the rest of

the points in the same door in the same station, as in Figure 8: Under certain conditions it might

be possible to sequence the robots and avoid interference, but not always. Although the time

robots spend at each access (say the front door) can be seen as a scarce resource, this resource

has not got a fixed amount. When more than one robot have to use the same access at the same

station, the time required for switching robots decreases the amount of “resource” available. This

is very different, however, from other formulations usually classified under cumulative restrictions

of task-station assignments (Boysen et al., 2007), as two or more stations (robots) share a non-

fixed amount of a resource. For the sake of comparison, Bautista & Pereira (2007) employ space
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constraints that are defined station-wise. It is clear that multiple robots per station do not offer

the same possibilities as multiple stations with single robots. Contrary to most works with station

parallelism (first studied by Buxey (1974)), these robots often do not offer space synergy, but might

interfere with each other.

Another interference (C4) example lies in robots crossing arms (Figure 7). It is possible for

either the front robot perform welding points in the back of the car, or the back robot perform

welding points in the front of the car. However, if they do so simultaneously the chances of collision

of the robotic arms are great, as depicted by the Figure 7, where both robots perform accessible

welds, but the station’s configuration is undesirable.

Figure 7: Arm Crossing Interference. Figure 8: Space Dispute Interference.

These interference characteristics are very difficult to translate into adapted features of the

classification schemes of Becker & Scholl (2006), Boysen et al. (2007) and Battäıa & Dolgui (2013).

Consequently, the combination of all the problem’s features give rise to a very complex ALB

problem that is even more difficult to adapt into previously described models. Prior to the work

described in this paper, the studied manufacturing line’s balancing was performed manually, based

almost exclusively on the engineer’s and operator’s experiences. To the best of our knowledge,

there is no literature model that can describe all these characteristics in a single model. This

means that balancing such manufacturing line requires a new model.

3. Model

3.1. General Concepts

The employed model operates some simplifications in order to approximate the real-world

problem. The main simplification is that we do not establish a sequence for points performed by

each robot, but rather count the number of points and the number of movements (classified as:

very small, small, medium and large) required to perform said points. This simplification is based

on two observed facts: Firstly, most of the welding points were distributed in logical paths such

that the robot’s time spent on that path was proportional to the number of points performed.

Secondly, when the robot moved from one path to another, the time spent on such movement

could usually be classified into one of four classes, which are further discussed at the end of this

section.
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Robots are presumed to be fixed to a station, with fixed given properties and parameters (such

as speed, tools, position and capabilities). Two parameters of interest were the relative velocities of

each robot and the fixed time required per welding point. This robot-wise fixed time is associated

with opening and closing the welding claws. In general, newer robots tend to allow higher speeds

due to better technological features and robots with bigger tools (often required to access some

welding points) tend to have lower speeds and longer fixed times due to slower operation. All

stations have a fixed constant time associated with the entrance and exit of each vehicle of said

station, time during which it is assumed that no welding point can be performed.

Welding points are grouped in regions, as depicted by the Figure 9 in which welding points

(red dots) are boxed in accordance with physical characteristics and the accessibility constraints.

Regions have the following characteristics:

• All welding points in a region take the same amount of time to be performed. This time is

added to fixed time per point of the robot that performs it. The movement time between

points of the same region can be regarded as part of the time required to perform a welding

point;

• The time spent by a robot in a region is proportional to the number of points performed by

said robot at said region;

• If a robot can access the region, it can access all points in it;

• Each region r has a fixed and given number of points Nr;

• In a first approximation, the movement time is considered constant between regions. That

is: if a robot works at three regions, it will move twice between regions and have a movement

time twice as great as a robot that only works at two regions (and thus only moves once

between regions);

The region hypothesis was based on a problem’s characteristic: welding points were mostly

lined up in logical geometrical paths and locations, and these logical paths could be divided in

accordance to how the robots could access them.

Figure 9: Example on how welding points were grouped in regions, adapted from the case study.
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Welding points can be performed from different accesses: front door, back door, luggage com-

partment, windshield. Some regions can be reached by multiple accesses (Figures 5 and 6). In

order to better describe movements, accesses must be taken in account. If a robot is accessing

regions within the same access, then the movement time tend to be smaller than when the robot

accesses regions from different accesses. The concept of accesses adds a different kind of movement

to the problem. Movements between accesses are analogous to movements between regions and

can be analogously counted. Figure 10 illustrates the different regions reachable by accesses: some

points can only be performed with the robotic arm positioned in a certain access, for instance green

indicate regions accessible through the back door, while blue indicates regions accessible through

the front door.

Figure 10: Accesses for the regions and adjacencies

Further movement time refinements are provided by the adjacency concept: Two regions that

are next to one another (one is connected to the other) are deemed adjacent, meaning that in

some cases the movement between them can be ignored or reduced. For instance, the regions

that surround the front door can be seen as adjacent (as shown in Figure 10). The same applies

to accesses. The movement time between the front and back doors is naturally smaller than the

movement time between the front door and the luggage compartment. In many cases a large

physical region must be divided in several adjacent regions because of accessibility constraints: if

a robot can access the region, it can access all the welding points in it. Therefore, regions were

modeled according to both accessibility and movements. Adjacencies were used to better describe

movement times. For instance, in Figure 9, the front door’s cycle of regions is composed of adjacent

regions, but they must be divided in order to account for the accessibility capacities of different

robots.

Some constraints required grouping regions in sets that share some particular characteristics.

There are two types of groups of regions that must be taken in consideration: Macro-regions (used

to deal with interference constraints) and cycles (used to prevent incorrect counting of the number

of adjacencies a robot has benefited from). The particular way in which these groups of regions

behave is described in the Section 3.3. The Figure 11 illustrates a pair of possible crossing constraint

macro-regions: if, in the same station, the front robot accesses the back macro-region and the back
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robot accesses the front region they are likely to collide their robotic arms, as illustrated by the

Figure 7.

Figure 11: Macro-regions defined for interference constraints

As previously mentioned, the number of movements is counted. Movements between regions

within the same access are deemed “small” (or “very small” if the regions are adjacent). Movements

between accesses are deemed “large”, unless there is an adjacency between the accesses (in which

case they are “medium” movements). Here are examples of each movement type: Small - Moving

from the left to the right side of the front door. Medium - Moving from the front door to the back

door. Large - moving from the front door to the luggage compartment.

Movements are counted by adding the number of regions and accesses a robot performs welding

points, and subtracting the time-wise difference linked to the number of allowable adjacencies. The

restrictions that control these operations will be described in Section 3.3.

3.2. Sets and Variables

The problem is modeled around its decision variables, that are all defined based on parameter

sets. In order to differentiate sets of parameters and sets of variables, the later will start with a

lower-case letter (v for integer and real variables and b for binary variables). The tuple sets that

are employed to define the variables are a discrete collection of tuples, whose interpretations are

summarized at the Table 1. The problem’s variables, their types, tuple sets and interpretation are

listed and summarized at the Table 2. Lastly, some constraints require some additional parameters

that are either vectors or constants. These parameters are listed by the Table 3.

Each variable set is based on a domain (tuple sets) and has one variable for each element of

said set. For example, the variable set bWA has one binary variable for each (w, a) tuple in the

tuple set WA, namely bWA(w,a). The tuple and variable sets mostly follow a concept-based letter

orientation. For example, R stands for regions, W for robots, A for accesses, S for stations. This

pattern seeks to simplify interpretation: for instance, the binary variable bWA(w,a) is set to true

when the robot w performs welding points by the access a.

All variables in the proposed model are strictly non-negative. In our case the main decision

variable is an integer number of welding points, performed by the robot w at the region r via the

access a. The variable set vWRA contains one integer variable for each element of the tuple set
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Table 1: Parameter Tuple sets: They are employed throughout the model from the variable defi-

nitions to the constraint formulations

Sets Tuple Description of each range and meaning of the tuples on each set

S s Range for all stations

R r Range for all regions

W w Range for all robots

WS (w, s) Indicates that the robot w is allocated at the station s

WRA (w, r, a) Indicates that the robot w can reach the region r via the access a

WA (w, a) Indicates that the robot w can use the access a

RRadj (r1, r2) Indicates that the regions r1 and r2 are adjacent

WRRadj (w, r1, r2, a) Indicates that the robot w can benefit from the adjacency between r1 and r2 via the access a

WAAadj (w, a1, a2) Indicates that the robot w can benefit from the adjacency between a1 and a2

CR (c, r) Indicates that the region r belongs to the region-cycle c

CA (c, a) Indicates that the access a belongs to the access-cycle c

WCR (w, cr) Indicates that the robot w can perform the region-cycle cr

WCA (w, ca) Indicates that the robot w can perform the access-cycle ca

WEM (w, em) Indicates that the robot w can access the exclusion macro-region em

WCM (w, cm) Indicates that the robot w can access the crossing macro-region cm

EMR (em, r) Indicates that the region r belongs to the exclusion macro-region em

CMR (cm, r) Indicates that the region r belongs to the crossing macro-region cm

WMWM (w1,m1, w2,m2)
Indicates that the robot w1 cannot access the crossing macro-region m1 at the same time that

robot w2 accesses the crossing macro-region m2

EA ea Indicates that the access a defines a exclusion interference constraint

EM em List of all the macro regions em that define exclusion constraints

Table 2: Variables sets, their types, the sets and tuples they are defined by and their meaning

Variable Set Tuple Set Tuple Description and meaning of the variable from the set

vCT - - Line’s cycle time (Time Units)

vCTW W w Robot w’s cycle time (Time Units)

vWRA WRA (w, r, a) Number of welding points performed by robot w on region r via the access a

bWRA WRA (w, r, a) Whether or not the robot w performs points on region r via the access a

vNMR W w Number of movements between regions performed by the robot w

vNMA W w Number of movements between accesses performed by the robot w

bWRR WRRadj (w, r1, r2, a) Whether or not the robot w benefits from the adjacency between the regions r1 and r2 via the access a

bWAA WAAadj (w, a1, a2) Whether or not the robot w benefits from the adjacency between the accesses a1 and a2

bWA WA (w, a) Whether or not the robot w uses the access a

bWEM WEM (w,m) Whether or not the robot w performs points on the exclusion macro-region m

bWCM WCM (w,m) Whether or not the robot w performs points on the crossing macro-region m
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Table 3: Parameters employed for occurrence, time controlling and interference constraints

Parameters Set Tuple Meaning

Ts - - Fixed time associated to preparation at stations (Time Units)

Nr R r Number of points in the region r

Tr R r Duration per point in the region r (Time Units)

Tw W w Duration per point for the robot w (Time Units)

Vw W w Relative Speed of the robot w

TmovR - - Movement time between regions (Time Units)

TmovA - - Movement time between accesses (Time Units)

TadjR - - Time gained per adjacency between regions (Time Units)

TadjA - - Time gained per adjacency between accesses (Time Units)

Up - - Upper bound parameter for exclusion constraints

Dp - - Decrease per robot parameter for exclusion constraints

WRA of accessibility (that contains the tuples (w, r, a) of regions r accessible by the robot w via

the access a). This is a heavily assignment bounded problem: in the studied cases only about 10%

of the possible (w, r, a) combinations were feasible.

There are many decision variables that follow vWRA, the first one is the binary bWRA. Each

bWRA(w,r,a) that is true when its corresponding vWRA(w,r,a) ≥ 1, and false otherwise. The

variables in the set bWA are true if the worker w uses the access a (WA is another accessibility

set).

Movement variables are defined for each w in W : vNMR counts the number of movements

between regions and vNMA counts the number of movements between accesses. The adjacency

variables bWRR (bWAA) are true when the robot w benefits from adjacencies between the regions

r1 and r2 (accesses a1 and a2) and are defined for each tuple (w, r1, r2) in WRRadj ((w, a1, a2)

in WAAadj) of feasible adjacency.

The last parameter sets for movements are CR and CA, whose tuples (c, r) (and (c, a))

indicate that the region r (the access a) is part of the region cycle c (the access cycle c). Their

main purpose is to limit the number of adjacencies a robot can benefit from. They are defined

when there are adjacencies that form a cycle, in which case it is possible to have more adjacencies

than movements. As shown by Figure 12, a cycle with 4 adjacent regions has 4 adjacencies and

3 movements. This is why cycles are part of the logical constraint of adjacencies between regions

and accesses. The set WCR (WCA) indicates that the robot w can perform welding points in all

regions (accesses) of the region (access) cycle cr (ca), and is a set that can be determined by the

accessibility sets WRA and WA.

Finally, the interference constraints require two sets of macro-regions: exclusion and crossing

macro-regions. Their parameters are sets EMR and CMR, with tuples (m, r) that list regions

r that belong to each macro-region m. The variable set bWEM (bWCM) contains binary vari-

ables for each tuple (w, m) in the set WEM (WCM) with macro-regions m where the robot w

can perform welding points. These variables indicate whether or not the robot performs weld-

ing points in the macro-region. The crossing constraints also require crossing parameter tuples

(w1, m1, w2, m2) (set WMWM) that inform that if the robot w1 accesses the macro-region m1
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Figure 12: Illustration of the reason cycles are employed to correctly count the number of move-

ments and adjacencies: If a robot displaces through regions that form an adjacency cycle, there

will be one more adjacency than the number of movements, this implies that the adjacency time

benefits could be higher than the time spent on the required movements. Cycle constraints (In-

equalities 12 and 13) prevent such wrong consideration.

and the robot w2 accesses the macro-region m2 they may collide, therefore, leading to an unfeasible

solution. Another variant of the exclusion constraint formulation is the access-wise interference

constraint, defined based on the number of robots that employ the same access a in the exclusion

access set EA.

The last variables within the proposed model are the cycle time of the manufacturing line

(vCT ) and the cycle time of each individual robot w (vCTWw).

3.3. Constraints

There are three kinds of constraints in this model. Firs, the occurrence constraint requires that

all welding points in all regions be performed. Second, there are the time measuring constraints that

seek to determine the cycle time of each robot and of the line as a whole. Lastly, the interference

constraints seek to ensure that robots do not collide during the performance of their tasks.

3.3.1. Occurrence Constraint

The occurrence constraint states that the sum of welding points performed by all robots by

all accesses in each region equals the number of welding points in the region, as stated by the

Equation 1. This constraint is defined based on the assignment binding WRA set that allows only

robots that can access a region to perform points in it.

∑
(w, r, a)∈WRA

vWRA(w, r, a) = Nr ∀ r ∈ R (1)

3.3.2. Time Controlling Constraints

The cycle time (vCT ) is determined by the line’s bottleneck station, worker or, in this case,

robot (vCTWw). This is stated in the Inequality 2.
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vCT ≥ vCTWw ∀ w ∈W (2)

The cycle time of each robot w (vCTWw) is determined by the Equation 3. The total time of

a robot is given by the time required to perform the welding points assigned to it added to the

movement time and to the preparation time Ts of its station. The movement time is estimated as

the sum of movements between regions (multiplied by the time between regions TmovR), added to

the sum of movements between accesses (idem with TmovA) and subtracted by the sum of adjacency

time gains between regions and between accesses (with times TadjR and TadjA).

vCTWw =
∑

(w, r, a)∈WRA

vWRA(w, r, a) · (Tw + Tr) +

+ TmovR/Vw · vNMRw +

+ TmovA/Vw · vNMAw −

− TadjR/Vw ·
∑

(w, r1, r2, a)∈WRRadj

bWRR(w, r1, r2, a) −

− TadjA/Vw ·
∑

(w, a1, a2)∈WAAadj

bWAA(w, a1, a2) + Ts ∀ w ∈W

(3)

The model’s variables that control each part of the robot’s movement approximation are de-

scribed in the following equations. Firstly, the variables in the sets bWRA and bWA are controlled

by the Inequalities 4 and 5. These variables determine in which regions and accesses each robot

operates. These constraints establish a fixed charge aspect to the problem: the movement costs

of accessing regions. This occurs both in regard to the number of points in a region and in regard

to the number of regions in an access (Hillier & Lieberman, 2015). As such, it is expected that

good solutions tend to have fewer movements, concentrating each robot’s work in areas closer to

one another.

bWRA(w, r, a) ≥ vWRA(w, r, a)/Nr ∀ (w, r, a) ∈ WRA (4)

bWA(w, a) ≥ bWRA(w, r, a) ∀ (w, r, a) ∈ WRA (5)

The first movement variables defined are the movement counters: the number of movements

between regions (vNMRw) or accesses (vNMAw) is the number of regions or accesses minus 1

(unless the robot works in no region (or access) in which case the number of movements is zero).

This information is codified in the Inequalities 6 and 7 (as stated in Section 3.2, all variables are

strictly non-negative).

vNMRw ≥ −1 +
∑

(w, r, a)∈WRA

bWRA(w, r, a) ∀ w ∈ W (6)

vNMAw ≥ −1 +
∑

(w, a)∈WA

bWA(w, a) ∀ w ∈ W (7)
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The adjacency variables can only be set as true if the robot w works at both regions r1, r2

(accesses a1, a2) on the set WRRadj (WAAadj). This restriction is stated by the Inequalities 8a

and 8b (Inequalities 9a and 9b). The adjacency gain between regions can only happen if both

regions are accessed by the same access a..

bWRR(w, r1, r2, a) ≤ bWRA(w, r1, a) ∀ (w, r1, r2, a) ∈WRRadj (8a)

bWRR(w, r1, r2, a) ≤ bWRA(w, r2, a) ∀ (w, r1, r2, a) ∈WRRadj (8b)

bWAA(w, a1, a2) ≤ bWA(w, a1) ∀ (w, a1, a2) ∈WAAadj (9a)

bWAA(w, a1, a2) ≤ bWA(w, a2) ∀ (w, a1, a2) ∈WAAadj (9b)

Region-to-region adjacencies require some limitations: Each adjacency between two regions r1

and r2 (listed by (r1, r2) tuples in RRadj) can only be used by one robot (Inequality 10). Further-

more, each robot w can only benefit from two adjacencies tied to a given region r (Inequality 11).

These constraints are required to prevent mathematical gains with no real-world counterpart.

∑
(w, r1, r2)∈WRRadj

bWRR(w, r1, r2) ≤ 1 ∀ (r1, r2) ∈ RRadj (10)

∑
(w, r, r1)∈WRRadj

bWRR(w, r, r1)+

+
∑

(w, r2, r)∈WRRadj

bWRR(w, r2, r) ≤ 2 ∀(w, r, a) ∈WRA
(11)

Lastly, the cycle constraints limit adjacencies region-wise (CR contains tuples (c, r) of adjacent

regions r that form a cycle c) and access-wise (CA, idem as regions with (c, a) for accesses that

form a cycle), as stated by the Inequality 12 (Inequality 13). These constraints are relevant for

robots w that can access all regions r in the cycle c: even if it performs welding points in all regions

of said cycle, it cannot benefit from all adjacencies.

∑
(c, r1) ∈ CR
(c, r2) ∈ CR

(w, r1, r2, a) ∈ WRRadj

bWRR(w, r1, r2, a) ≤ −1 +
∑

(c, r) ∈ CR

1 ∀ (w, c) ∈WCR (12)

∑
(c, a1) ∈ CA
(c, a2) ∈ CA

(w, a1, a2) ∈ WAAadj

bWAA(w, a1, a2) ≤ −1 +
∑

(c, a) ∈ CA

1 ∀ (w, c) ∈WCA (13)

3.3.3. Interference Constraints

Four kinds of interference constraints were considered: region station-wise exclusivity, crossing-

macro regions, exclusion macro-regions, and access-wise exclusion. They seek to describe problems

that may happen as robots “compete” for the same physical space.
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The region station-wise exclusivity states that at each station s, at most one robot w can access

each region r. This constraint is stated by the Inequality 14. Note that this constraint prevents a

robot from accessing the same region from two different accesses. From a practical standpoint, this

is a desirable feature as that solution would be dominated by the one in which the robot performs

the same number of points via only one access.

∑
(w, s)∈WS

(w, r, a)∈WRA

bWRA(w, r, a) ≤ 1 ∀ s ∈ S, r ∈ R (14)

The macro-region allocation variables control the two types of macro-region interference con-

straints. A robot is allocated to a macro-region if it performs welding points in one of the regions

of said macro-region. This is stated by the Inequalities 15a and 15b.

bWEM(w,m) ≥ bWRA(w, r, a) ∀ (w, r, a) ∈WRA, (m, r) ∈ EMR (15a)

bWCM(w,m) ≥ bWRA(w, r, a) ∀ (w, r, a) ∈WRA, (m, r) ∈ CMR (15b)

The crossing macro-region constraints seek to forcefully ban two different robots r1 and r2 from

occupying conflicting physical space defined by the macro-regions m1 and m2 (notice that m1 and

m2 might be the same, but the robots must be different). In essence at most either r1 occupies

m1 or r2 occupies m2. This constraint is codified by the Inequality 16. For instance, suppose that

wf is the front robot and wb is the back robot, while mf and mb are the front and back door

macro-regions. In this case (wf , mb, wb, mf ) impedes the crossing of the robot arm illustrated

by the Figure 7: It allows either the front robot to work in the back of the car or (exclusive or)

the back robot to work at the front of the car.

bWCM(w1, m1) + bWCM(w2, m2) ≤ 1 ∀ (w1, m1, w2, m2) ∈WMWM (16)

Ideally, one might want each overall region of the product to be occupied by at most one robot

per station (and, thus, employ crossing macro-regions for all possible interference zones). If that

is the case one could use crossing macro-region constraint with the same macro-region m for two

or more robots. In this case (wf , mf , wb, mf ) would prevent two robots from simultaneously

accessing the front door, as in Figure 8. But in some cases, due to accessibility constraints, this

might simply be impossible or lead to a poor solution. Exclusion macro-regions are less restrictive

interference constraints that seek to allow two robots to be assigned to the same zone in a way

that they will together spend less than the cycle time in said zone. In this case, because the cycle

time correlates very well with the number of welding points performed, it is stated that the sum

of points performed will be limited by an upper-bound value (parameter Up) that decreases (by

the parameter Dp) for each robot that works at the same exclusion macro-region. This decrease

happens because robots take time to enter and leave the access. This is stated by the Inequality 17.
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This constraint that can be seen as an adaptation of resource constraints, as described on Section 1.

∑
(w, r, a)∈WRA

(w, s)∈WS
(m, r)∈EMR

vWRA(w, r, a) ≤ Up−Dp·

−1 +
∑

(w, s) ∈ WS
(w, m)∈WEM

bWEM(w, m)

 ∀ s ∈ S, m ∈ EM

(17)

The goal of Inequality 17 is to limit the number of points performed in a macro region by a

decreasing limit: the higher the number of robots in the same station performing welding points

in the same macro-region, the smaller the total number of points they can perform. For instance,

in the case studies of section 4, the upper bound value of number of the points (Up) was 24. If two

robots work at the same station in the same macro-region this limit decreases to 20 (therefore, Dp

equals 4), as time will be required for one robot to leave the macro-region and for the other robot

to enter it. These parameters were defined based on observation.

The access exclusion constraint is defined by the Inequality 18. This constraint is very similar

to the macro-region exclusion constraint defined by Inequality 17. The main change is that the

number of points performed on a same station by different robots via the same access (rather than

macro-region) decreases the more robots simultaneously access said access-region.

∑
(w, r, a)∈WRA

(w, s)∈WS

vWRA(w, r, a) ≤ Up−Dp ·

 −1 +
∑

(w, a)∈WA

bWA(w, a)

 ∀ a ∈ EA, s ∈ S

(18)

4. Case Studies

The optimization models were developed based on one of the robotic spot welding lines of

Renault’s facility in the outskirts of Curitiba in Brazil. The line is depicted in a simplified manner

by the Figure 13. It is composed of 42 robots distributed symmetrically (left and right sides

of the vehicle) amongst 13 stations. Each stations had either two, four or six robots. When

this model was developed, there were four car models (vehicle types) that passed through this

manufacturing line, each of them with over 700 welding points. This was the last part of the car

body manufacturing line, the body-in-white stage: the pieces were all assembled and, therefore,

there were no precedence relations to deal with.

IN OUT 

Figure 13: Studied line’s simplified layout, with 42 robots allocated to 13 stations

The line was a mixed-model one with asynchronous pace, however, the total workload of each

vehicle was very similar and their individual cycle times were not significantly different. This was

16



partly due to the company’s previous divisions of welding points, which were performed in such a

way that left this line with a rather similar workload for all car models. Although in other parts

of the manufacturing line sequencing could be a significant problem (see Boysen et al. (2009) for a

mixed-model sequencing survey), in this part each vehicle could be balanced individually, allowing

four (simpler) single model optimizations to replace a much more complex mixed-model one. This

reduction of a Mixed-Model ALBP into P-Single-Model ALBPs could have downsides in manual

lines due to the lack of specialization effects and set-up times (Becker & Scholl, 2006). The robots

do not display learning curves and can easily alternate between products, allowing us to set these

considerations aside. The main mixed-model aspect remaining was the accessibility limitations,

defined based on the geometrical features of both: the robot and the vehicle models. However,

this was considered an input rather than a variable. The goal was set to the minimization of cycle

time of each product model. Therefore, one main instance was created for each vehicle.

4.1. Instances Definition and Data Calibration

The process of defining instances was not trivial: Firstly, data was collected as for where were

the welding points. Secondly, the model’s parameters (such as movement times, fixed times per

robots) were determined by filming the robot’s activities and carefully observing the videos. The

model was designed to be slightly conservative, and, therefore, when a parameter (say movement

time between non-adjacent regions of the same access) was observed with different values in different

cases, the worst case was picked.

In order to assure that estimated task times are close to real times, a calibration must be

performed. Figure 14 shows a comparison between the model’s predictions and the robot’s real

times after the due data calibration for one instance. The model’s approximation on the station

workload (measured in time units) is higher than the real workload, indicating that any solution

obtained by the proposed model will be an upper bound to the real solution.

Figure 14: Comparison between the model’s approximation to the empirically measured time:

Notice that the approximations are slightly conservative
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Table 4: Number of welding points (N), upper bounds (UB) and lower bounds (LB) on cycle

time, and computation times for each instance. Each variant represent a product type. The 100%

instances represent the practical case for each product.

Variant 1 Variant 2

% Points N UB LB time N UB LB time

10% 73 1,026.0 1,026.0 0s 68 972.0 972.0 74s

20% 146 1,439.5 1,439.5 2s 146 1,452.0 1,452.0 2s

30% 219 1,578.0 1,578.0 3s 221 1,564.4 1,564.4 4s

40% 287 1,745.5 1,745.5 3s 295 1,782.0 1,782.0 4s

50% 366 1,956.0 1,956.0 7s 372 1,980.0 1,980.0 4s

60% 459 2,208.0 2,208.0 34s 426 2,074.4 2,074.4 25s

70% 516 2,357.5 2,357.5 4s 518 2,334.0 2,334.0 19s

80% 591 2,561.5 2,561.5 13s 591 2,515.6 2,515.6 53s

90% 642 2,712.0 2,712.0 9s 640 2,664.0 2,664.0 5s

100% 733 2,867.5 2,867.5 45s 740 2,868.0 2,838.0 3600s

Variant 3 Variant 4

% Points N UB LB time N UB LB time

10% 71 1,075.6 1,075.6 2s 70 1,075.6 1,075.6 2s

20% 142 1,404.0 1,404.0 4s 142 1,422.0 1,422.0 6s

30% 217 1,620.0 1,620.0 9s 216 1,620.0 1,620.0 10s

40% 276 1,680.0 1,680.0 456s 273 1,713.3 1,713.3 247s

50% 348 1,986.0 1,986.0 48s 347 1,968.0 1,968.0 242s

60% 440 2,124.0 2,118.0 3600s 438 2,164.0 2,133.3 3600s

70% 495 2,334.0 2,334.0 1379s 492 2,290.0 2,256.0 3600s

80% 568 2,458.0 2,448.0 3600s 564 2,514.0 2,381.0 3600s

90% 599 2,640.0 2,640.0 159s 597 2,538.0 2,448.0 3600s

100% 708 2,874.0 2,736.0 3600s 706 2,868.0 2,723.5 3600s

Once the parameters had been defined, points were grouped in regions, based on accessibility

data. Such data was not initially available and was determined using a robotic simulation software

owned by the company. This software had 3D models for each vehicle and robot, allowing to

verify before implementation if each of the welding points in a solution could, indeed, be reached.

Each region was assigned accesses from which robots could reach it. Adjacency, macro-regions and

cycle parameter tuples were also defined based on the observed geometrical characteristics. The

instances’ data were adapted in order to preserve both: the reproducibility and the company’s

private information.

The model and data from each product variant allowed the definition of Mixed Integer Linear

Programming models for each vehicle. In order to evaluate the computational complexity in regard

to the number of welding points. Instances were generated with various percentages of the total

number of welding points. Each region’s number of welding points was multiplied by a reducing

factor and rounded down to an integer. These factors were chosen, in a manner that instances

would have, approximately, 10%, 20%, ..., 90% and 100% of the total number of welding points.

The 100% instances represent the practical cases. Data on the Supporting Information present the

tuple and parameter sets required to define each problem instance. Model files (.lp format) are also

provided, along with the best solution files for each instance, containing the value of the objective

function and of each variable presented in the model file. Thus, reproducibility is assured by the
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provided detailed information.

4.2. Results

The computational testes were conducted using a Core i7 (2.3 GHz) computer with 8.0 GB of

RAM and a universal MILP solver was employed to solve all instances. The computational time

limit of each run was set to one hour. Table 4 illustrates the solution of the computational and

practical case studies, each variant representing a different vehicle. The computational tests indi-

cate that the number of points to be distributed influences the computational load. However, this

number is not the only factor to be considered: Optimality was more difficult for Variant 4 problems

than for Variant 1, despite the number of welding points. This means that other instance-specific

factors such as accessibility and interferences might significantly affect the instance’s computational

difficulty.

For the practical cases, the company’s mid-term productivity goal was a cycle time of 2880 T.U.

One of the practical instances could be solved to optimality (relative gap = 0%), while the others

couldn’t (up to 5% relative gap). However, all of them allowed the cycle time to reach the company’s

goal (the value associated with the target productivity, measured in time units per vehicles).

The model’s gain means that the studied part of the manufacturing line has the capacity to

produce around 6.6% more vehicles without employing a single new robot. The Figure 15 illustrates

the station-wise gain in cycle time. The vehicle corresponding to the model that was solved to

optimality was also the one that was produced the most, meaning that it tends to dictate the line’s

overall cycle time. Furthermore, according to Table 4, the obtained cycle time difference between

models for the real-world case is smaller than 1% (2,868.0 versus 2,874.0) corroborating with the

hypothesis that they could be treated separately rather than on a mixed-model (or multi-model)

manner. All models did reach the main cycle time goal (2880 T.U.) and idle times in some of the

robots can be used, for instance, to perform welding points that were not performed in this part

of the manufacturing line.

The Figure 15 shows a comparison between the initial workload distribution between stations

and the optimized configuration. By computing the trade-off between movements and number of

performed points, the model is able to better distribute the workload and reduce the flow-shop’s

cycle time: In some cases, the sum of robot times (heavily linked to movements) increased by the

optimization process, but the line’s cycle time decreased. Notice that this has been achieved under

the conservative parameter framework made clear by Figure 14 validation.

The obtained solutions to the practical instances were afterwards internally translated back

from mathematical to tangible practical information and were verified to provide feasible solutions

to the real-world problem by the company’s specialists.

5. Conclusion

Balancing robotic spot welding manufacturing lines is a challenging problem. The time required

to welding the points is short compared to cycle time. However, robots have to move between them
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Figure 15: Comparison between the model’s optimized solution for one of the instances and the

empirically measured time: The dashed line highlights the smaller largest value for cycle time

amongst stations.

and the movement time must be taken in account. Furthermore, geometrical aspects impose assign-

ment constraints and multiple robots per station impose interference constraints. The combination

of these restrictions lead to the understanding that previously described models could not properly

describe the problem. A new (MILP) model is proposed and applied to solve a real-world scenario

from a Renault factory in the outskirts of Curitiba, Brazil.

Practical case studies were conducted for four vehicle models on a large-size real-world line (42

robots and over 700 welding points for each model). Each of the models was optimized separately,

and optimality was not reached for all instances. However, the obtained answers offered cycle time

reductions of around 6.6%, allowing the company to reach its mid-term goal of productivity for

that part of the factory without the need to buy new robots.

Computational studies have shown that the number of welding points is a relevant factor

to the model tractability, but not the only one. Some small instances were more difficult than

larger counter-parts (see Table 4). This indicates that instance-specific characteristics, such as

accessibility and interference, are also relevant factors for computational tractability.

Instances were generated to describe each of the vehicle types produced in the factory. Parame-

ters were set according to empirical observations. The line was a mixed-model one, however in this

particular part of the factory all models could individually reach similar cycle times. This verified

the hypothesis about the optimization process being able to set aside sequencing considerations

and balance each model individually. The results obtained for the case studies were validated by

the company specialists.

The new Mixed Integer Linear Programming model provides a framework to optimize robotic

welding lines by offering a formulation to simultaneously deal with: Robot-wise variations on

parameters, Assignment Restrictions, Movement Times and Interference Constraints. As future
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development, this basic framework can be adapted to incorporate other features such as feeder

lines and parallel stations. Furthermore, in an assignment line design context, the presented model

could be adapted to minimize the number of robots required or optimize a cost-oriented function.
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